Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 342

Liczba wyników na stronie
first rewind previous Strona / 18 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fuel consumption
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 18 next fast forward last
EN
The paper presents the energy consumption and emissions of pollutants in the exhausts during the take-off operation mission of a Short Take-Off and Landing (STOL) aircraft equipped with a traditional and hybrid propulsion system. This research is part of the contemporary trend of research aimed at reducing the impact of aviation on the natural environment. The analyzed propulsion system consists of turbine engines and electric motors cooperating with them. In this work, on the basis of data from flight tests, the energy requirement for the aircraft to perform the intended mission was determined. On this basis, fuel consumption and the corresponding pollutant emissions were determined for an aircraft with a traditional power unit. For comparison, an aircraft with a hybrid propulsion system with the same mass as an aircraft with a traditional propulsion system was used. Then, energy consumption, fuel consumption and emission of CO2, CO, NOx, VOC, PM10 and PM2.5 were obtained for both aircraft variants. The most important results of the conducted research include a reduction in CO2 emissions by 23% and NOx emissions by 46% in the case of the hybrid propulsion. This indicates potential benefits of using hybrid propulsion in aviation.
EN
Fluctuating fuel prices and the importance of road transport in the context of the environmental impact of transport make the research related to fuel consumption analyses still up‑ to‑ date and socially important. The article presents the methodology for determining the statistical model of fuel consumption based on the analysis of the significance of driving parameters. The fleet of trucks (sets of tractor truck and semi‑ trailer) was selected as the research object due to their dominant share in the road commercial transport sector in the transport of goods. In order to calculate determinants of fuel consumption, the classic method of least squares was used, as a result of which an optimal statistical model of fuel consumption was developed using the elimination method. The model developed was also verified based on the real data.
PL
Zmienne ceny paliw oraz znaczenie transportu drogowego w kontekście oddziaływania środowiskowego transportu powodują, że badania związane z analizami zużycia paliwa są ciągle aktualne i istotne społecznie. W artykule przedstawiono metodologię wyznaczania modelu statystycznego zużycia paliwa na podstawie analizy istotności parametrów jazdy. Jako obiekt badań wybrano flotę samochodów ciężarowych (zastawów ciągnik siodłowy i naczepa) z uwagi na ich dominujący udział w sektorze drogowego transportu zarobkowego w przewozie ładunków. W celu wyznaczenia determinant zużycia paliwa zastosowano klasyczną metodę najmniejszych kwadratów, w efekcie której opracowano, metodą eliminacji, optymalny model statystyczny zużycia paliwa. Przeprowadzono także weryfikację opracowanego modelu na podstawie danych rzeczywistych
EN
This paper presents a method for the precise diagnosis of a diesel engine in an agricultural tractor based on the analysis of efficiency changes and parameters characterizing the process of fuel-air mixture preparation. We proposed that the technical condition be identified based on available data from the engine controller, as this enables the implementation of precise online diagnostics of an agricultural tractor. The method was verified using the original cycle, during which we simulated several engine defects leading to a change in conditions and quality of the processes of creating and burning the fuel/air/flue gas mixture. In the paper, we justified the selection of the points at which the engine parameters were measured, as they provide the most information and allow for efficient identification of damage. These results indicate the possibility of damage identification without the use of the diagnostic cycle in the operation of operator-driven vehicles and autonomous vehicles.
EN
In this work, the authors focused on analyzing the energy efficiency and dynamics during car acceleration, featuring investigation of acceleration dynamics under various acceleration intensities. The tests were performed in the speed range between 45 km/h and 120 km/h, at a constant gear ratio. This enabled obtaining variable dynamic parameters of the acceleration process, ranging from about 0.1 to 1.4 m/s2, and recording variation in fuel consumption from 6.28 to 27.03 dm3/100km. The study focused on determining the relation between fuel consumption, energy efficiency and vehicle acceleration depending on the available drivetrain power. The relation between fuel consumption and vehicle acceleration was described by using the dynamic index. The proposed dynamic index takes into account the energy (from burned fuel) and vehicle acceleration intensity to obtain an objective metric for characterizing the acceleration process. The aforementioned index takes the form of the passenger car movement energy quality index and can be related to widely known physical properties, thus ensuring its universality. The index expresses the energy expenditure within the time needed to accelerate a vehicle weighing 1kg by a 1m distance. As opposed to other criteria that are applied to the assessment of passenger cars dynamics, the index shows a high determination coefficient R2 in excess of 0.99, and can be used as a universal metric to test other vehicle types.
EN
The thermostat is a crucial component of a car's internal combustion engine's cooling system. Failure of the thermostat can result in undercooling or overheating of the engine. Undercooling may increase wear of engine components due to poor lubrication and lead to higher fuel consumption. Conversely, overheating can damage the engine. The engine coolant temperature is one of the fundamental parameters for the proper functioning of the engine. The vehicle's onboard diagnostics system was unable to detect the malfunction of the thermostat. As a consequence, fuel consumption increased, which was especially noticeable in winter. This paper evaluates the possibility of carrying out thermostat diagnostics using data obtained from the OBD system through a diagnostic interface ELM327, which is connected to the OBD-II connector and interfaced with Torque Pro software on a smartphone. Analysis of the data confirmed that the proposed diagnostic method was appropriate. Furthermore, the impact of the thermostat malfunction on different factors such as coolant temperature, cold engine warm-up time, parameters characterising thermostat cycling, and fuel consumption of the car were studied. It was found that, apart from the already mentioned decrease in coolant temperature, the thermostat hysteresis also decreased and the thermostat cycle time increased.
EN
The article presents a mathematical model demonstrating the synergy of HEV energetic machines in accordance with the model predictive control. Then the results of road tests are presented. They were based on the factory control of the above-mentioned system. The results of the operating parameters of the system according to the factory control and the results of the operating parameters according to the model predictive control were compared. On their basis, it could be concluded that the model predictive control contributed to changes in the power and electrochemical charge level of the energy storage system from 50.1% (the beginning) to 56.1% (the end of course) and for MPC from 50.1% (the beginning) to 59.9% (the end of the course). The applied MPC with 13 reference trajectories (LQT) of power machines of the series-parallel HEV allowed for fuel savings on the level of 4%.
EN
Hybrid vehicles are a good solution for a smooth transition towards electromobility. The aim of this paper is to examine the relationship between route parameters and fuel consumption and emissions of harmful exhaust components of vehicles with a conventional and hybrid drive system. As a result of simulation tests, values for fuel consumption and CO2 emissions for HEV and ICEV vehicles were obtained in 28 trips in urban conditions. The average fuel consumption achieved by the hybrid was 53% lower than that of a conventional vehicle. When analysing the average value of CO2 emissions, the hybrid showed a 54% lower value than a conventional vehicle. Using statistical methods, the relationship between the route parameters and the operational parameters of the vehicle was determined. It has been shown that the route parameters strongly correlate with the fuel consumption and CO2 emissions of a conventional vehicle. In the case of hybrid vehicles, there was a weaker relationship between these parameters.
EN
This paper proposes the use of vibroacoustic signal parameters to estimate the fuel consumption of a miniature GTM-400 engine. The method for testing engine vibrations is presented, followed by an analysis of the results obtained. Two vibration point measures were selected to build a fuel consumption model. The models obtained were verified, after which those that best describe the real fuel consumption of the engine were selected. The paper proves that the vibration signal, in addition to its applications in jet engine diagnostics, can be used to determine engine performance, which can contribute to reducing the complexity of construction and increasing the economics of engine operation.
EN
This study aims to determine and evaluate the operating parameters of three modern self-propelled forage harvesters during maize silage harvest. The machines were equipped with operator assistance systems. Field tests were conducted for three self-propelled forage harvesters: Claas Jaguar 870, Claas Jaguar 950, KroneBiG X 650. The tests were conducted in large-scale farms located in Wielkopolskie and Pomorskie voivodeships. Maize was harvested at the beginning of the full-grain maturity stage. A complete time study covering four control shifts in accordance with BN-76/9195-01 was performed to determine operating ratios and indicators. Fuel consumption was determined using the full tank method. The Claas Jaguar 950 forage harvester had the highest effective mass performance: 141.3 Mg⸱h-1. The same machine also achieved the lowest fuel consumption per tonne of fresh matter (FM) harvested: 0.51 kg⸱Mg-1 . Labour expenditure for the self-propelled forage harvesters tested during the total time of change ranged from 0.38 to 0.62 labour hour per hectare. The tested machines also had very high technical and technological reliability.
PL
Niniejsze badanie ma na celu określenie i ocenę parametrów operacyjnych trzech nowoczesnych samojezdnych sieczkarni podczas zbioru kukurydzy na kiszonkę. Maszyny były wyposażone w systemy wspomagania operatora. Badania polowe zostały przeprowadzone dla trzech samojezdnych sieczkarni: Claas Jaguar 870, Class Jaguar 950, Krone BiG X 650. Badania przeprowadzono w dużych gospodarstwach na terenie województwa Wielkopolskiego i Pomorskiego. Kukurydzę zbierano na początku etapu pełnej dojrzałości ziarna. Przeprowadzono pełne badania czasu w celu określenia wskaźników operacyjnych, które objęło cztery zmiany kontrolne zgodne z normą BN-76/9195-01. Zużycie paliwa określono przy użyciu metody pełnego zbiornika. Sieczkarnia Class Jaguar 950 miała najwyższą wydajność masy efektywnej: 141.3 Mg⸱h-1. Ta sama maszyna osiągnęła także najniższe zużycie paliwa na tonę świeżej zebranej masy 0.51 kg⸱Mg-1 . Nakład pracy samojezdnych sieczkarni zbadanych podczas całego czasu zmiany wahał się między 0.38 do 0.62 roboczogodzin na hektar. Badane maszyny posiadały także wysoką niezawodność techniczną oraz technologiczną.
EN
Deterioration in the performance of gas turbines is a well-known phenomenon occurring during their operation. The most important form is a decrease in the internal efficiency of the compressor and turbine due to fouling, which is the most significant deterioration problem for an operator. This article presents the effect of gas turbine fouling as a drop in airflow, pressure ratio, and compressor efficiency resulting in a reduction in power output and thermal efficiency. This resulted in a decrease in the nominal power of a gas turbine and an increase in the fuel consumption (heat rate). The fouling effects were described using the example of the MT30 marine gas turbine with a nominal power of 36 MW. The estimated profit loss during the operation of the gas turbine was within the range of 1–10% of the total fuel consumption cost. A 2% deterioration in the output of a gas turbine accounted for US$ 10,000–20,000 per year and 1 MW of gas turbine nominal power (according to marine fuel prices in 2019–2020) – this means at least US$ 300,000 annually for an MT30. Due to the low accuracy of fuel consumption measurements, another possibility was provided. The correlation between the gas turbine power deterioration and thermal efficiency was presented, which made it possible to estimate the increase in the specific and total fuel consumption when the nominal power deterioration is known. Two linear approximations were proposed to calculate increases in the annual operating costs for an MT30 due to fouling.
EN
In recent years, a large number of one- to two-seat-type helicopters have appeared, raising the possibility to determine the dependencies inherent in these classes. Such dependencies are extremely necessary at the preliminary design stage, in particular, for determining the fuel mass. The relative mass of fuel depends on the required range and flight time of the helicopter, as well as on the characteristics of the engine and the required power of the helicopter. Based on statistical data, the article presents an approximate relation of the hourly fuel consumption of engines that small helicopters are equipped with. The additional amount of fuel required to complete missions has also been determined. General dependency of the fuel weight that can be used at the preliminary design stage is presented according to the analysis results.
EN
The article presents the test stand and the test results of a vehicle with an SI engine, fueled by a blends of LPG and DME gaseous fuels. During the tests, a chassis dynamometer was used, which reproducibly reflected road conditions. The tests were carried out for various shares of DME in the mixture, thus determining the maximum possible share of this fuel. The measuring points have been extended with different engine loads and different rotational speeds. The analysis of the pressure inside the engine cylinder made it possible to compare the operation of the engine powered by mixtures of different proportions to the reference fuel - LPG.
EN
The use of nanoparticles in fuels provides new opportunities for modification of fuel properties, which may affect the operational parameters of engines, in particular the efficiency and fuel consumption. The paper presents comparison of compression ignition engine performance fuelled with neat diesel and nano-diesel. Alumina (Al2O3) was used as nanoparticles. Surface-active substances, including Span 80 surfactant, as well as water admixture were used to improve the stability of the produced fuel. Measurements of the thermal conductivity and dynamic viscosity of the produced mixtures were conducted. In this study was used naturally aspirated, water cooled, four-stroke diesel engine. Addition of Al2O3 nanoparticles result in 4% reduced fuel consumption, addition of TiO2 nanoparticles result in 10% reduced fuel consumption with respect to neat diesel fuel.
EN
This paper examines the effect of an external preheating system for an internal combustion engine on fuel consumption, CO2 emissions, and cabin temperature of a Euro4 vehicle. A 1 kW electric system powered by 220 V was installed in series in the cooling system of a vehicle with a compression-ignition engine of 2.5 dm3 capacity. The tests were carried out in simulated urban driving conditions (distance of 4.2 km), extra-urban driving conditions (distance of 17 km), and during idling at cold-start temperatures ranging from -10oC to 2oC. Preheating the engine under simulated city conditions reduces fuel consumption by 2.64 dm3/100 km and increases the supply air temperature immediately after engine start-up. Due to the preheater being powered from an external power grid, the cost per trip and total CO2 emissions are increased. Assuming renewable energy sources, CO2 emissions would be reduced the most for the stationary tests after engine preheating. In contrast, emissions would be reduced the least for extra-urban driving.
EN
The share of road transport accounts for more than 85% of the total structure of freight transportation. In this process, mainly motor vehicles are used to carry out the freight work. In addition to them, forklifts are also used, whose task is to load and unload goods. These vehicles are categorized as NRMM (Non-Road Mobile Machinery). Forklift trucks have internal combustion or electric drive. The paper presents an analysis of the emission of pollutants and fuel consumption from forklift trucks equipped with diesel and LPG power. The study uses the author's test taking into account the raising/lowering of a pallet, a loaded and unloaded run. The measurements were made in the warehouse and outside the warehouse using the Portable Emission Measurement System (PEMS) equipment. The aim was to show the influence of loading conditions on the emission of pollutants and fuel consumption.
EN
Efficient fuel consumption in the world is essential in automotive technology development due to the increase in vehicle usage and the decrease in global oil production. Several studies have been conducted to increase fuel consumption savings, Fuel Cells (FCs), the application of alternative energy vehicles and the Engine Control Unit (ECU) system. FCs do not require oil energy to propel the vehicle, so this technology promises to reduce energy consumption and emissions. However, this research still leaves problems. FCs are susceptible to short circuit hazards, and ownership costs are very high. Alternative energy applications produce less power, less responsive acceleration, and insufficient energy sources to enter mass production. The ECU application still has an orientation toward achieving stoichiometry values, so the increase in fuel efficiency has the potential to be improved. Driving behavior is a variable that has a close relationship with fuel consumption efficiency. However, research on driving behavior is only studied for implementation in autonomous car-following technologies, safety systems, charging needs characteristic of electric vehicles, emission controls, and display images on invehicle information systems. Meanwhile, research on driving behavior as a control system to improve fuel efficiency has not been carried out. To that end, this study proposes the use of driving behavior for a newly designed control system to improve fuel efficiency. The control system in this research is a prototype model to be assessed using the Fuel Saving Index (FSI) analysis. An artificial neural network is used to help the recognition of driving behavior. The results showed that the newly designed control system was categorized on scale IV of FSI. On this scale, the power generated by the engine is quite optimal when it is in the eco-scheme driving behavior. The driving behavior control system can significantly improve the efficiency of fuel consumption. Air to Fuel Ratio (AFR) is achieved above the stoichiometric value.
EN
A contemporary road vehicle (RV) is a rather complex system, consisting of a large number of subsystems, assemblies, units, and elements (parts). While operating, an RV interacts with the environment, and its elements interact with each other. Consequently, the properties (parameters) of these elements change in the process - hardness, roughness, size, relative position, gapping, etc. A partial solution to the presented problems can be the search for a technique for assessing the RV technical condition by a generalised criterion, which is quite sensitive to changes in the technical state. One of these criteria may be fuel consumption in litres per 100 kilometres. This paper investigates the possibilities of using the fuel consumption indicator as a criterion for assessing the technical condition of the vehicle and the vehicle maintenance and repair technologies have been generalised to obtain a given technical solution. Thus, the possibility of using the fuel consumption indicator as a criterion for assessing the technical condition of the vehicles was explored using the Volkswagen Touran 1.9 TDI operating in urban conditions using a driving cycle. A clear correlation between the fuel consumption and the service lifetime of the vehicle has been established; therefore, it depends on the frequency and quality of the maintenance and repair (MR). The vehicle MR technology has been generalised to obtain a specified technical solution. The process of creating an RV MR Technology model is implemented based on an iterative approach (repetition) with the possibility to specify their features.
EN
Decision support systems (DSS) recently have been increasingly in use during ships operation. They require realistic input data regarding different aspects of navigation. To address the optimal weather routing of a ship, which is one of the most promising field of DSS application, it is necessary to accurately predict an actually attainable speed of a ship and corresponding fuel consumption at given loading conditions and predicted weather conditions. In this paper, authors present a combined calculation method to predict those values. First, a deterministic modeling is applied and then an artificial neural network (ANN) is structured and trained to quickly mimic the calculations. The sensitivity of the ANN to adopted settings is analyzed as well. The research results confirm a more than satisfactory quality of reproduction of speed and fuel consumption data as the ANN response meet the calculation results with high accuracy. The ANN-based approach, however, requires a significantly shorter time of execution. The directions of future research are outlined.
EN
The article presents the structure and a principle of operation of a simple indicator of the type of a fuel-air mixture supplying a spark-ignition engine with a direct fuel injection. The designed indicator was tested, as a result of which its correct operation was verified. By using information from the indicator, it was possible to assess its usefulness for assisting the driver in an economical driving style. Preliminary studies show that thanks to the use of the developed indicator, it is possible to save about 10% of fuel as a result of the correction of the economic driving style on the route selected for the purpose of this research paper. The target of this study was to confirm a noticeable reduction in fuel consumption when supplying the engine with a stratified mixture. In order to obtain more accurate data, the research should be extended to include a greater number of routes and its division into urban and non-urban areas.
EN
The Euro 5 limits for L-category vehicles are applicable since 2020 and for this reason there is lack of studies examining the emissions of this category. In this study we tested a 1000 cm3 Euro 5 motorcycle over the World Harmonized Motorcycle Test Cycle (WMTC). The gaseous pollutants were approximately half of their respective limits. The cold start (first 2 minutes) contributed to the majority of the emissions. The solid particle number emissions were also 6.5 times below the limit for passenger cars, but the particles not counted with the current methodology were around 2 times higher. High concentrations of volatiles were emitted at the high speed part of the cycle.
first rewind previous Strona / 18 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.