Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  engine room
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The human factor is one of the main reasons for fires in engine rooms and most of the scenarios are very similar. Fires in engine rooms are usually associated with fuel or oil leaking onto a hot surface. Furthermore, engine rooms are very inhospitable places to work. Noise, vibration and high temperatures are most frequently mentioned by crews as negative factors that influence their work. The adoption of a safety culture is one of the ways to increase the fire safety level in engine rooms. Understanding and accepting the necessity of building a safety culture among engine room crews can effectively influence their standard of work. Safety management procedures are an important part of building a safety culture. The change in labor standards must be built on a safety culture among crews.
EN
Hot surfaces in ship engine rooms are the risk objects that most frequently contribute to fire ignition. Thermography, especially when using thermal cameras, offers many advantages over more common infrared thermometers, but dedicated systems are often prohibitively expensive. An affordable hybrid approach was thus tested in this study, where a low-cost thermal camera smartphone was paired with a common infrared thermometer. Measurements were taken in situ during a sea voyage in an engine room under normal operating conditions, and the surfaces of the main engine, the generating set auxiliary engine, and the exhaust gas boiler were tested. Several areas were discovered to be well above the generally-accepted temperature limit of 220°C, primarily due to absent or poor insulation. Clear recommendations for remediation are made, and the proposed testing method offers fast, easy, effective, and affordable inspection.
EN
A The novelty of this study consists in the fact that, at the same time as the monitoring and acquisition of data of the air quality (from inside and outside), a monitoring and acquisition of data of the real-time biometric measurements of subjects exposed directly to the needle will be made. Medium by means of a bracelet attached to the subject's arm. This bracelet is designed to perform biometric measurements without creating discomfort to the subjects analyzed in the activities in which they are involved. This measurement is carried out with 9 different sensors for: pulse, oxygen in the blood, air flow (breathing), body temperature, electrocardiogram, galvanic skin response, blood pressure, the patient's position/movement, and the status of muscle (electromyography sensor). The data thus obtained will be focused on a PC and subsequently analyzed. The results of monitoring the health parameters of the subjects analyzed find application in the maritime field, to ships, especially in the engine room, where the air suffers quality transformations. The crew's return to the workplace may decrease due to the degradation of the air quality in the premises.
EN
The main propulsion engine is the heart of a vessel which carries the entire load of the ship and propels to move ahead. The main engine consists of various sub-systems, the fuel oil system is the most important one. Fuel oil system provides fuel to the engine via a fuel injector mounted on the engine cylinder head. During the voyage, the main engine of a ship encounters a variation in loads and stresses due to rough weather to harsh manoeuvring, which sometimes leads to the breakdown of the main engine. Fuel oil systems are identified as one of the main reasons for engine breakdown. Many accidents happened due to the failure of the main engine fuel oil system in the last two decades. To ensure safe and reliable main propulsion engine operation, it is required to assess the reliability of a fuel oil system. However, there is a significant lack of appropriate data to develop the reliability assessment techniques for fuel oil system. This study proposes appropriate data collection and analysis procedure for the reliability assessment of a fuel oil system. Data related to Failure Running Hours (FRH) of a fuel oil system is collected from 101 experienced marine engineers through a questionnaire. The collected data processed using a box plot and analysed for a normality test. It helps to identify the generalization of the data. Moreover, this study identified failure-prone components of a fuel oil system. The collected data will help in developing reliability assessment techniques for accurate reliability analysis of a fuel oil system. The identified failure-prone components will assist in future reliability analysis and risk mitigation strategies for improving the overall safety and reliability of the shipping industry.
5
EN
Maritime transportation is the essence of international economy. Today, around ninety percent of world trade happens by maritime transportation via 50,000 merchant ships. These ships transport various types of cargo and manned by over a million mariners around the world. Majority of these ships are propelled by marine diesel engines, hereafter referred to as main engine, due to its reliability and fuel efficiency. Yet numerous accidents take place due to failure of main engine at sea, the main cause of this being inappropriate maintenance plan. To arrive at an optimal maintenance plan, it is necessary to assess the reliability of the main engine. At present the main engine on board vessels have a Planned Maintenance System (PMS), designed by the ship management companies, considering, advise of the engine manufacturers and/or ship’s chief engineers and masters. Following PMS amounts to carrying out maintenance of a main engine components at specified running hours, without taking into consideration the assessment of the health of the component/s in question. Furthermore, shipping companies have a limited technical ability to record the data properly and use them effectively. In this study, relevant data collected from various sources are analysed to identify the most appropriate failure model representing specific component. The data collected, and model developed will be very useful to assess the reliability of the marine engines and to plan the maintenance activities on-board the ship. This could lead to a decrease in the failure of marine engine, ultimately contributing to the reduction of accidents in the shipping industry.
6
Content available Improvements to a fire safety management system
EN
The statistics invariably show that most onboard fires originate in the engine room. In hazardous conditions, fires can spread to other rooms of the ship and cause the loss of human life, and can cause the ship to be out of service or lost completely. To prevent these serious consequences, the engine room crew should be aware of hazards and ways to prevent them. It is also advisable to support their routine activities and actions in critical situations with an appropriate management system. For this reason, a survey was conducted at the beginning of 2019 of engine room crew members employed by a European shipowner, as a contribution to an analysis of fire safety management. Based on the results of the survey, some of the elements of the fire safety management system of the ship engine room are described. A properly constructed system that is understandable and accepted by the crew is one of the most important factors in increasing fire safety on a ship. Familiarisation with adequate procedures can significantly contribute to the successful prevention of accidents. This paper also proposes a checklist based on suggestions by the crew, which may be helpful in onboard fire prevention.
PL
Siłownia okrętowa to takie miejsce statku, w którym na małej powierzchni zgromadzonych zostało wiele materiałów palnych, takich jak np. paliwa, oleje smarne czy rozpuszczalniki. Podczas eksploatacji, w wyniku sytuacji awaryjnych, może dochodzić do ich niekontrolowanego uwolnienia. Najczęściej występującym scenariuszem zdarzeń jest wyciek paliwa z nieszczelności w instalacji paliwowej. W siłowni występują także inne liczne potencjalne źródła zapłonu. Są to m.in. gorące powierzchnie. Kontakt paliwa z takimi powierzchniami jest najczęstszym zdarzeniem inicjującym zapłon, a w konsekwencji rozwój pożaru. Bezpieczeństwo pożarowe siłowni zależy od rodzaju zastosowanego napędu, paliwa, wyposażenia, zabezpieczeń czynnych (takich jak np. przegrody pożarowe) i biernych (jak np. instalacje gaśnicze, wykrywające pożar, gaśnicze, sprzęt gaśniczy), a także od działań załogi, armatora i inspektorów. Identyfikacja (np. z wykorzystaniem termowizji) i zabezpieczanie gorących powierzchni oraz przeciwdziałanie występowaniu wycieków paliwa, a także niezwłoczne ich usuwanie, to jedne z ważniejszych działań, które powinny być podejmowane przez załogę podczas codziennej eksploatacji. Przewidywanie możliwości wystąpienia zagrożeń, definiowanie potencjalnych scenariuszy powstania i rozwoju pożaru oraz właściwe zarządzanie bezpieczeństwem pożarowym, to działania prewencyjne, które w znaczący sposób również mogą przyczynić się do poprawy bezpieczeństwa pożarowego siłowni okrętowej.
EN
The engine room is one of ship’s spaces in which a lot of combustible materials are accumulated on a small area, such as for example fuels, lubricating oils and solvents. During operation, uncontrolled leakage may occur as a result of emergency situations. The most common scenario of fire origin is the leakage of fuel from leaks in the fuel system. There are also numerous sources of ignition in the engine room. These are, for example, hot surfaces, the fuel has contact with. It is the most frequent ignition initiating event and, consequently, the fire occurrence. The fire safety of the engine room depends on the type of propulsion, fuel, equipment, applied protection methods such as passive (fire resisting bulkheads) and active ones (extinguishing, detection and fire-fighting installations, extinguishing equipment), as well as crew, ship owners and inspectors activities. The Identification and protection of hot surfaces (for example with the use of the thermal imaging camera) as well as preventing the occurrence of fuel leaks and their immediate removal, are one of the most important tasks undertaken by the crew in everyday operations, which can significantly reduce the number of fires. Anticipating the possibility of the hazards occurrence, examining the potential scenarios of fires are the preventive activities, and the fire safety management, which can significantly contribute to the fire safety of the engine room.
PL
Artykuł przedstawia zagadnienia dotyczące możliwości poprawy bezpieczeństwa i komfortu pracy w siłowni okrętowej oraz zwiększenia jej podatności eksploatacyjnej i remontowej.
EN
This paper presents the possibilities of improvement of work safety and comfort in engine room and increasing its repairability and maintenance.
EN
The frequent causes of ships’ detentions by port authorities are abnormalities of marine power plant functioning. Each extended ship lay time in port results in a waste of ship operating time thus costs rise to ship owners. This is connected with improper marine power plant management. In order to avoid this, a ship engineer should have at his disposal computer aided system supporting him in the managing of the marine power plant. One element of the decision making process in managing the marine engine room is to determine how important is each of the tasks which the operators have to do. This estimation is the base to choose the most important tasks and make optimal schedule with them using AHP method. Based on practice, a hierarchic structure of factors influencing a tasks validity in the engine room operating process was made. Next a preliminary questionnaire was conducted, which put questions to the experts as chief engineers next. This enabled to define numerical values of suitable coefficients influencing on the validity of operating tasks, show results of calculations in form of mileage parameters of engine as a function of crank angle.
EN
The presence of flammable substances nearby hot surfaces in the engine rooms pose a fire hazard. Therefore the quick and effective removal of oil spills from these areas is of utmost importance. The simplest way is to use sorbent materials having the capacity to absorb oil substances. Oil sorbents comprise of a wide range of organic, inorganic and synthetic products. The choice of form and type of sorbent material depends on the intended application: type of spill, its size and location. The article describes the results of studies aimed to compare the absorbency of selected natural and synthetic sorbents in the context of their application in case of an oil spill in the engine room. Although the natural sorbents should not be used in water, because they absorb it and can in addition contaminate the seabed, they can be used to remove oil spills on the ship. After used they can be disposed on the ship by burning.
EN
The paper presents an analysis of the state and possibilities of using power electronics and electric drives on ships, and in particular, in ship engine room. Problems related to the operation of power electronics in the soft network are presented. The issues related to the design of multi-pulse high power rectifiers are discussed, which is one of the most popular power electronics devices used on vessels. Then a simulation study of selected rectifier circuits was carried out. The purpose of this study was to show the effect of selecting a power electronics design on the waveforms of the voltages and currents in a soft network on the rectifier example. Also discussed are main electromagnetic device problems and issues related to regulations and recommendations for their design and operation. Proper selection of the type of the power supply design and observance of the rules and regulations ensures the efficiency of the equipment and the quality of the energy being processed and reduces their negative impact on the remaining equipment and network.
PL
W artykule przedstawiono analizę stanu i możliwości wykorzystania urządzeń energoelektronicznych i napędów elektrycznych na statkach. Omówiono zagadnienia związane z projektowaniem wielopulsowych prostowników dużej mocy, które stanowią jedno z bardziej popularnych urządzeń energoelektronicznych stosowanych na jednostkach pływających. Przedstawiono problemy związane z eksploatacją urządzeń energoelektronicznych w sieci miękkiej. Następnie przeprowadzono badanie symulacyjne wybranych układów prostowników. Celem badania było pokazanie na przykładzie prostownika, konsekwencji wyboru konstrukcji urządzenia energoelektronicznego na przebiegi napięć i prądów w sieci miękkiej. Ponadto omówione zostały problemy dotyczące urządzeń elektromagnetycznych oraz zagadnienia związane z przepisami i zaleceniami dotyczącymi ich projektowania i eksploatacji. Właściwy dobór konstrukcji urządzania energoelektronicznego danego typu oraz przestrzeganie zasad i przepisów zapewnia zwiększenie sprawności urządzeń i jakości przetwarzanej energii oraz obniża ich negatywny wpływ na pozostałe urządzenia i sieć.
EN
The paper presents an analysis of the state and possibilities of using power electronics and electric drives on ships, and in particular, in ship engine room. Problems related to the operation of power electronics in the soft network are presented. The issues related to the design of multi-pulse high power rectifiers are discussed, which is one of the most popular power electronics devices used on vessels. Then a simulation study of selected rectifier circuits was carried out. The purpose of this study was to show the effect of selecting a power electronics design on the waveforms of the voltages and currents in a soft network on the rectifier example. Also discussed are main electromagnetic device problems and issues related to regulations and recommendations for their design and operation. Proper selection of the type of the power supply design and observance of the rules and regulations ensures the efficiency of the equipment and the quality of the energy being processed and reduces their negative impact on the remaining equipment and network.
EN
This article discusses requirements for the extinguishing systems in the engine room. The sources of fire hazards in engine rooms were characterized. The causes and consequences of selected engine room fires that occurred within the last five years were presented. The basic requirements for the fire-extinguishing systems installed in engine rooms were scrutinized. The most commonly used fire-extinguishing systems in engine rooms are the ones containing a gaseous extinguishing agent. Their main advantages are short response time after agent release and the ability to supply an extinguishing medium to areas that are hard to access. The agent used in such systems does not cause damage and there is no need to remove its residues after fighting the fire, as in the case of other agents such as foams. As an example, a CO2 system was characterized, as it is the most frequently used in engine rooms.
14
Content available Engine room fire safety
EN
The paper characterizes an engine room as a place of a fire’s origin and its spread. It presents potential sources of fire and fire protection onboard. Examples of international rules and regulations are described as well. It also gives the statistics and some scenarios for fires and some recommendations for machine spaces. It presents problems of engine room fire safety, understood as a result of the analysis of different criteria. The engine room was chosen for analysis because many factors whose presence result in a fire could be found there in the way of combustible materials: fuel oil, lubrication oil, hydraulic oil and thermal oil consumed by the main engine, generator engine, boiler, thermal oil heater and hydraulic oil equipment, paints, solvents etc. Sources of potential fires are mainly the hot surfaces of exhaust gas pipes, turbochargers, boilers and waste oil incinerators, ignitions, sparks, static electricity etc. In addition, many engine room fires have an electrical source, such as electrical short-circuits and thermal overheating in the switchboards. Approximately 70% of fires in the engine room have typical scenarios: the outflow of combustible liquid and contact with a hot surface and can reach temperatures between 700–1000°C. They spread rapidly, their power and dynamism depending on the intensity of the outflow of the combustible liquid and its properties, but also the local conditions and the geometry of engine room as well. Fire safety in engine rooms is determined both by good design and the company’s and crew’s focus on fire prevention. Some of the recommendations are high standards of cleanliness in the engine room, regular checks of materials used for insulating high temperature surfaces, attention to fire risks when repairs and maintenance works are carried out and many other factors.
15
Content available remote Symulatory siłowni okrętowych sposobem na poprawę bezpieczeństwa na morzu
PL
Artykuł dotyczy szkoleń kadry działu maszynowego na symulatorach siłowni okrętowych. Odniesiono się do krajowych i międzynarodowych przepisów morskich regulujących szkolenia na symulatorach w celu zapewnienia bezpiecznej eksploatacji statku. Przedstawiono symulatory różnych producentów, zwracając uwagę na wymogi stawiane placówkom dydaktycznym w zakresie szkolenia na symulatorach, a także korzyści wynikające z ich wykorzystania w kształceniu mechaników okrętowych. Na tej podstawie zaproponowano kierunek dalszego rozwoju symulatorów siłowni okrętowych i związanego z tym szkolenia.
EN
The paper concerns marine engine room simulators, their makers, application and seafarer training. It refers to national and international maritime organizations' regulations. The simulators of different makers have been presented. The attention has been drawn to requirements set up to education maritime institutions. Also benefits which come from using simulators in education process of seafarers were mentioned. It proposes a way of further development of engine room simulators and seafarer training.
PL
Celem artykułu jest zwrócenie uwagi na problem emisji szkodliwych związków do atmosfery przez statki morskie. Wprowadzony w życie 19 maja 2005 roku Załącznik VI Konwencji MARPOL dotyczący zapobiegania zanieczyszczeniu powietrza przez statki, wymusił na armatorach stosowanie rozwiązań zmierzających do ograniczenia emisji substancji szkodliwych. Jednym z instrumentów pozwalających na realizację tych wytycznych jest wprowadzony obligatoryjnie, dla projektowanych i współcześnie budowanych statków projektowy współczynnik efektywności energetycznej EEDI. W artykule przedstawiono czynniki mające wpływ na ograniczanie zużycia paliwa przez statki prowadzące do obniżenia emisji do atmosfery szkodliwych substancji, a przez to uzyskanie wymaganych wartości współczynnika EEDI. Są to czynniki związane z kadłubem statku, siłownią oraz układem pędnik–ster. W pracy podano również przykłady stosowania tych metod na nowoczesnych statkach zbudowanych w ostatnich latach.
EN
The goal of the paper is to draw the attention to the emission issue of harmful exhaust from oceangoing ships into the atmosphere. Annex VI of the MARPOL Convention concerning prevention against air pollution by oceangoing ships, in force since May 19th 2005, has forced the ship owners to use means for reduction of environment harmful substances emitted into the atmosphere. Energy Efficiency Design Index (EEDI) is one of the tools enabling implementation of the above mentioned regulations, compulsory to all new design and build ships. The factors has been presented in the paper that can effectively reduce the ships’ fuel consumption and that way minimize the release of harmful substances into the atmosphere and allow to achieve the required EEDI values. These factors refer to hull, engine room and the propeller–rudder arrangement. There are given, in the paper, examples of the fuel consumption reduction methods used by contemporary oceangoing ships built in the recent years.
PL
Przedstawiono definicję audytu efektywności energetycznej. Scharakteryzowano na podstawie obowiązujących dokumentów prawnych zakres zmian w statkach rybackich, które wymagają audytu energetycznego. Opisu zmian dokonano dla kadłuba, części nad podkładem i pod pokładem oraz układu napędowego i narzędzi połowowych. Scharakteryzowano kuter rybacki o długości ok. 40 m i jego urządzenia energetyczne. Przedstawiono program komputerowy wspomagający pracę siłowni kutra. Przeprowadzono krytyczną dyskusję nad możliwości wykorzystania programu komputerowego wspomagającego pracę siłowni do zagadnień związanych z audytem efektywności energetycznej. Wspomniano o obowiązku posiadania od 01.01.2013 przez statki Międzynarodowego Świadectwa Efektywności Energetycznej i związanego z nim Planu Zarządzania Efektywnością Energetyczną Statku (SEEMP).
XX
The paper presents a definition of energy efficiency audit. On the basis of existing legal documents was characterized the range of changes in fishing vessels that require an energy audit. The description of the changes made to the hull, the part over the main deck and under the main deck, the propulsion system and fishing devices. The fishing vessel with a length of approx. 40 m and its energy devices was characterized. The paper presents a computer program supporting the work of the engine room of fishing vessel. In publication was taken the critical discussion of the possibility to use a computer program to support the work of the engine room to the issues related to the audit of energy efficiency. It is mentioned that since 01.01.2013 for each ship International Energy Efficiency Certificate must be issued and ship-owners must implement Ship Energy Efficiency Management Plan (SEEMP) procedures.
PL
Siłownie okrętowe statków są bezpośrednio odpowiedzialne za emisję energetyczną, tzn. emisję GHG (GreenHouse Gas). W siłowniach jest wytwarzana energia niezbędna do napędu statku, zabezpieczenia jego funkcjonowania i warunków bytowych załogi oraz koniecznej dla przyjęcia, utrzymania w wymaganej kondycji i zdania przewożonego ładunku. Na wskaźniki poziomu emisji energetycznej ma wpływ sprawność siłowni oraz rodzaj stosowanych paliw. Określona ilość emisji CO2 i ciepła ma miejsce także podczas postoju statku nawet jeżeli konieczna do tego energia jest pobierana z zewnątrz. Kolejnym elementami odpowiedzialnym za poziom emisji energetycznej są pędniki i opory kadłuba. Każde polepszenie sprawności w tej dziedzinie w literaturze naukowo-technicznej jest łączone ze stopniem zmniejszenia emisji CO2. Zużycie paliw i poziom emisji energetycznej związane z wyprodukowaniem energii do napędu statku dla statku rośnie w przybliżeniu do trzeciej potęgi prędkości statku. Stąd powstaje kolejne zagadnienie takiego doboru prędkości statku żeby minimalizować emisję energetyczną oraz koszty transportu i maksymalizować zysk. Powyższe cele mogą być niekiedy sprzeczne. Ważnymi czynnikami wpływającymi na emisję przez statki lub zespół statków jest organizacja transportu oraz dobór tras z uwzględnieniem pogody.
EN
Engine rooms of the vessels are directly responsible for the energy emission, ie. emission of GHG (Green House Gas). The engine roomgenerates energy required for ship propulsion, securing its functioning and living conditions of personnel and necessary for the cargo operation. On indicators of energy emissions will affect the efficiency of the engine room and the type of fuel used. The specific CO2 and heat emissions also occurs during the ship is in harboureven if the energy is drawn from the outside. Another element responsible for energy emissions are propellers and hull resistance. Any improvement in efficiency in the field of literature, science and technology is combined with the degree of reduction in CO2 emissions. Fuel consumption and emissions energy production related energy for ship propulsion increases approximately to the third power of the speed of the ship. Hence arises another issue such a choice of ship speed to minimize the emission of energy and transportation costs and maximize profit. These objectives can sometimes be contradictory. Important factors influencing the emissions from vessels or vessels group is the organization of transport and the selection of routes, taking into account the actual weather.
EN
The frequent causes of ships’ detentions by port authorities are abnormalities of marine power plant functioning. Each extended ship lay time in port results in a waste of ship operating time thus costs rise to ship owners. This is connected with improper marine power plant management. In order to avoid it, a ship engineer should have disposal computer aided at his system supporting him in the managing of the marine power plant. Such a system can be worked out on the condition that a mathematical model, which represents the decision – making process of an engineer has been built. One element of the decision making process in managing the marine engine room is to determine how important is each of the tasks which the operators have to do. This estimation is the base to choose the most important tasks and make optimal schedule with them. The present work shows the approach to the rating method of operating tasks using AHP method. Based on practice, a hierarchic structure of factors influencing tasks validity in the engine room operating process was made. Next, a preliminary questionnaire was conducted, which put questions to the experts as chief engineers next. This enabled to define numerical values of suitable coefficients influencing on the validity of operating tasks. The equation contains this all coefficients permit to determinate numerical values of an operating task’s validity in given engine room operating processes.
EN
The frequent causes of ships’ detentions by port authorities are abnormalities of marine power plant functioning. Each extended ship lay time in port results in a waste of ship operating time thus costs rise to ship owners. This is connected with improper marine power plant management. In order to avoid this, a ship engineer should has system supporting his in the managing of the marine power plant at his disposal computer aided. Such a system can be worked out on the condition that a mathematical model, which represents the decision – making process of an engineer has been built. One element of the decision making process in managing the marine engine room is to determine how important is each of the tasks which the operators have to do. This estimation is the base to choose the most important tasks and make optimal schedule with them. The present work shows the approach to the rating method of operating tasks using AHP method. Based on practice, a hierarchic structure of factors influencing a tasks validity in the engine room operating process was made. Next, a preliminary questionnaire was conducted, which put questions to the experts as chief engineers next. This enabled to define numerical values of suitable coefficients influencing on the validity of operating tasks. The equation contains this all coefficients permit to determinate numerical values of an operating task’s validity in given engine room operating processes.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.