Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 91

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  energy dissipation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
The volume of the stilling basin can be reduced, energy can be dissipated, and floods can be contained with the help of spillways. The aim of this Computational Fluid Dynamics (CFD) study is to investigate how compound slopes change water flows through spillways. To measure turbulence, the Realizable k-ε model was used, and the multiphase volume of fluid (VOF) method was utilized to determine where air and water meet. Five models of spillways with different slopes (normal slope (MS1) = 30°, compound slope(MS2 and MS3) = 20°/39°, and compound slope (MS4 and MS5) = 39°/20°) were modelled and simulated using the ANSYS Fluent software to determine their flow characteristics. Numerical simulation results were compared to experimental results, and it was found that the CFD model captured the key flow aspects accurately. The numerical model carefully observes the several flow patterns (nappe, transition, and skimming) that emerged owing to variations in slope and geometry. When it comes to dissipating energy, models with a compound slope (39°/20°) do the best. When compared to the normal slope model (30°) with a step size of 10, the increase in energy dissipation is 14%. According to the findings, the TKE (turbulent kinetic energy) was elevated by the compound slope. The results of this research show that the spillway can be operated effectively and reliably under a wide range of flow conditions, fulfilling an important goal of the project.
EN
This paper is the first of two parts of a pioneering study to evaluate the effect of the strain rate of a GFRP laminate on the stress response. The assessment concerns the elastic range of deformation only. The publication contains the assumptions and methodological description of the conducted experiments. The non-destructive bending tests and the methodology for determining the modulus of elasticity and the energy of the load-unload cycle are presented in detail. The full set of test results is presented in the appendix. The results and conclusions are discussed in the second part of the study, which is a separate publication.
EN
This paper is the second part of a study aimed at evaluating the influence of the strain rate of a plain weave GFRP laminate in a non-destructive static three-point bending test on the stress response of the material. It was found that the stress level during the entire course of the deflection rises with the increase in the strain rate. The relative change in the stress level is comparable for the 0/90 and 45/-45 samples. As the loading speed increases, the elastic modulus of the material also grows. For an increment in the strain rate from 1.11·10–3 to 5.57·10–1 1/s, the increase is 10% for the 0/90 samples and 17.7% for the 45/-45 samples. The dependence of the modulus on the strain rate is logarithmic. Based on the theoretical analysis, the cause of the observed effects of the strain rate on the material response was attributed to the viscoelastic behawior of the matrix (cured polymer resin) and the viscoelastic behavior of the system of fibers at the level of the laminate mesostructure.
EN
Shape memory polymers (SMP) are new multifunctional materials raising increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behavior as well as characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25_C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behavior of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP.
EN
To investigate the dynamic tensile properties and energy dissipation characteristics of marble in three different conditions: dry, water-saturated, and oil-saturated, a Brazilian disk splitting test was conducted using a 50 mm diameter Hopkinson pressure bar (SHPB) device. The findings indicate that the peak strain and dynamic tensile strength of the three conditions increase with strain rate, exhibiting a clear strain rate effect. Additionally, lubricating effects of water and oil weaken internal shear sliding friction, thus promoting crack expansion. Furthermore, immersion of fluid in marble weakens the cementation of internal mineral particles, leading to lower tensile strength of marble saturated with water and oil compared to dry marble under dynamic impact. When analyzing the energy dissipation of marble, both the absorption energy and dissipation energy density increase with oil strain rate, indicating a positive correlation. Moreover, numerical results obtained from ANSYS/LS-DYNA correspond well with experimental data, thus verifying and interpreting the experimental outcomes.
EN
The self-centering buckling-restrained brace (SC-BRB) may achieve self-restoration for structures and, to a certain degree, diminish the substantial seismic residual deformation following rare earthquakes when compared to the usage of the conventional buckling-restrained brace (BRB). It may be possible to reduce the abrupt change in stiffness at the location of the strengthened stories and make the outrigger better at dissipating energy by improving the design of the energy-dissipation outrigger. This study compares the seismic performances of two types of energy-dissipation outriggers with BRB and SC-BRB web member designs during rare earthquakes so that the changes can be measured. The results show that using the SC-BRB web member design reduces the maximum inter-story drift ratio by an average of 7.68% and increases the average plastic-energy dissipation of the outrigger truss by 8.75%. The evaluation results showthat the SC-BRB outrigger truss structure has better structural regularity and energy-dissipation performance. It has the ability to efficiently regulate the structural seismic response and lessen primary-structure damage.
EN
One of the main causes of damage to weirs regulating the flow of water in canals is local erosion of the bottom and banks. This is mainly due to the excessive kinetic energy of the stream flow and the uneven volumetric distribution of the water flow rate at the end of the strengthening. Due to this, 35-40% of hydraulic structures fail prematurely. The aim of the research was to determine the parameters of the spatial hydraulic jump arising behind the hydrotechnical structure and the rapid expansion of the cross-section. The research showed that the hydraulic jump with a curved cylinder in the plan is a spatial form and not only dissipates the energy of the stream, but also acts as a diffuser. With the stream expansion angle values in the range of 7-10°, a highly turbulent flow remains, which still Has high kinetic energy at a distance from the end of the structure. At an angle of 25-27°, the flow is smooth, the velocity distribution is uniform across the width of the channel. In some cases, the forced expansion of the cross-section at the outflow of the weir favours the energy dissipation and uniform flow velocity distribution.
EN
Previous researchers have been widely studied the equation for calculating the energy dissipation in USBR Type IV, applied in the stilling basin structure as an energy dissipator. However, inefficient energy dissipating basins are commonly found in the field due to the large discharge and high water head, potentially damaging the bottom of the energy dissipating basin and its downstream river. Therefore, an energy dissipator plan fulfilling the safe specifications for the flow behaviour that occurred is required. This study aimed to determine the variation of the energy dissipators and evaluate their effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was undertaken on the USBR Type IV spillway system. The novelty of this experiment showed that combination and modification dissipation features, such as floor elevation, end threshold and riprap lengthening, could effectively dissipate the impact of energy downstream. The final series exhibited a significantly higher Lj/y1 ratio, a favourable condition due to the compaction of the hydraulic jump. There was also a significant increase in the downstream tailwater depth (y2) during the jump formation. Therefore, the final series energy dissipator was better in the stilling basin design for hydraulic jump stability and compaction. The increase in energy dissipation for the final series type was the highest (98.4%) in Q2 and the lowest (84.8%) in Q10 compared to the original series. Therefore, this type can better reduce the cavitation risk damaging to the structure and downstream of the river.
EN
The nonlinear dynamic behavior has an important impact on energy dissipation and vibra- tion damping characteristics of bolted joints. Firstly, the development of tangential dynamic models is summarized and analyzed. Secondly, a five-parameter Iwan model based on a trun- cated power-law distribution is proposed. The backbone and hysteresis curves are obtained. Thirdly, normalized and dimensionless analysis is performed. On the basis of the above, a more concise four-parameter Iwan model with stiffness continuity is proposed. Finally, the validity of the model is verified by comparing the energy dissipation vs excitation force amplitude curve with the experimental data.
EN
In this study novel integrative machine learning models embedded with the firefly algorithm (FA) were developed and employed to predict energy dissipation on block ramps. The used models include multi-layer perceptron neural network (MLPNN), adaptive neuro-fuzzy inference system (ANFIS), group method of data handling (GMDH), support vector regression (SVR), linear equation (LE), and nonlinear regression equation (NE). The investigation focused on the evaluation of the performance of standard and integrative models in different runs. The performances of machine learning models and the nonlinear equation are higher than the linear equation. The results also show that FA increases the performance of all applied models. Moreover, the results indicate that the ANFIS-FA is the most stable integrative model in comparison to the other embedded methods and reveal that GMDH and SVR are the most stable technique among all applied models. The results also show that the accuracy of the LE-FA technique is relatively low, RMSE=0.091. The most accurate results provide SVR-FA, RMSE=0.034.
11
Content available remote Minimizing movements for dissipative systems that are not gradient flows
EN
The time discretization method, which is a method of constructing time global solutions for gradient flows, is applied to dissipative systems in Hilbert spaces, which are not necessarily gradient flows. Equations with perturbation terms added to gradient flows are considered, and when the perturbation term is smaller than the principal term in an analytical sense, the dissipative structure of the energy is maintained, and the existence of time global solutions is shown by the time discretization method.
PL
Układy napędowe maszyn wyciągowych na szybach wydobywczych w kopalniach węgla kamiennego i rud miedzi bazują na silnikach prądu stałego wzbudzanych elektromagnetycznie. Sprawność energetyczna tych silników wynosi około 90%. W artykule przedstawiono silniki alternatywne: silnik prądu stałego wzbudzany magnesami trwałymi; silnik wzbudzany magnesami trwałymi i komutacją elektroniczną. Sprawność wymienionych silników jest większa, a ilość traconej energii w silnikach jest mniejsza.
EN
The drive systems of winding machines, on production shafts of coal mines and copper ores mines, are based on electromagnetically excited DC motors. The energy efficiency of these motors is around 90%. The alternative motors are presented in the article: DC motor excited by permanent magnets; a motor excited by permanent magnets and electronic commutation. The efficiency of these motors are greater, and the amount of energy lose in motors are smaller.
EN
Three equivalent exterior precast concrete beam-column (PCBC) connections have been investigated in this study in orderto analyze the effect of steel fiber reinforced concrete (SFRC) as cast-in-place (CIP) on the seismic performance of the PCBC connection. The connection was designed as a ductile connection for a moment-resisting frame and consists of a precast U-beam, precast column with corbel, interlocking bars, and CIP-concrete to connect the precast beam to precast column. The volume fractions of steel fiber incorporated within the CIP-concrete were 0%, 0.5% and 1%. A quasi-static load was applied vertically to the beam tip of the PCBC specimen. The results showed that the steel fibers contained within the CIP-concrete provided 2% increase of the maximum load, 17.7% increase of the energy dissipation, and increase in the joint stiffness of the PCBC connection. The steel fibers delayed the onset of cracking and slowed down the crack propagation, resulting in shorter cracks in the joint core of PCBC specimen, which correlates well with the deflection-hardening characteristic found from the modulus of rupture test.
14
EN
Energy dissipator functions to dissipate the river-flow energy to avoid longitudinal damage to the downstream river morphology. An optimal energy dissipator planning is essential to fulfilling safe specifications regarding flow behavior. This study aims to determine the variation of energy dissipators and evaluate its effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was carried out on the existing weir condition (two steps). It was also carried out on four stepped-weir variations, i.e., three-step, three-step with additional baffle blocks at the end sills, four-step, and six-step. Dimensional analysis was employed to correlate the different parameters that affect the studied phenomenon. The study shows a three-step jump shows a significantly higher Lj/y1 ratio, which is an advantage to hydraulic jumps’ compaction. The comparison of energy dissipation in all weir variations shows that the three-stepped weir has wasted more energy than other types. The energy dissipation increase of the three-step type is 20.41% higher than the existing type’s energy dissipation and much higher than other types. The dimensions of the energy dissipation basin are the ratio of the width and height of the stairs (l/h) of the three-step type (2.50). Therefore, this type is more optimal to reduce the cavitation risk, which damages the river structure and downstream area.
EN
Steel-glulam structure is a new type of composite structure,glulam have lateral support effect on steel plate, that can prevent premature buckling of steel plate and improve the stability of steel structure. In order to study the influence of column’s cross-section form on the seismic performance of steel-glulam composite beam-to-column exterior joint, the column’s cross-section form was taken as the basic variable (glulam rectangular section , H-beam section and H-beam-glulam rectangular section were used respectively). The pseudo-static tests of three composite beam-to-column joints were carried out to observe the different failure modes, and obtain the mechanical performance indexes. The experiment results demonstrated that: The energy dissipation capacity of beam-to-column exterior joint composed of glulam column was the worst, the ultimate bearing capacity and stiffness were the lowest. The ultimate bearing capacity of the exterior joints formed by the H-beam column and the H-beam-glulam composite column were both high, and their ductility coefficients were similar, while the former had better energy dissipation capacity.
EN
Surface tension of friction wear product material is linked with unit mechanical work of newly-formed surfaces of solids. A definition of surface energy also addresses the thermal effect, which is indirectly connected with wear. Physical differences between the development of liquids and solids surfaces are discussed. Both of the quantities defined are described in analytical terms and their value is determined for a selected example of experimental testing. The discussion is based on the first law of thermodynamics using the concept of specific enthalpy of wear products. Boundaries of an area in space where mechanical energy is dissipated and dimensions of a wear particle being formed are taken into account. Mechanical and thermal parts of the energy balance are differentiated.
PL
Napięcie powierzchniowe materiału produktów zużycia tarciowego zostało powiązane z jednostkową pracą mechaniczną nowo utworzonej powierzchni ciał stałych. W definicji energii powierzchniowej uwzględniono również efekt cieplny, który jest pośrednio związany ze zużyciem. Podkreślono różnice o charakterze fizycznym między rozwojem powierzchni cieczy i ciał stałych. Obie zdefiniowane wielkości zostały opisane analitycznie, a ich wartości określono dla wybranego przykładu badań eksperymentalnych. Rozważania oparto na pierwszej zasadzie termodynamiki, w której wykorzystano koncepcję entalpii właściwej produktów zużycia. Uwzględniono granice obszaru przestrzennego, w którym energia mechaniczna jest rozpraszana, oraz wymiary powstałej cząstki zużycia. W bilansie energetycznym rozdzielono część mechaniczną i termiczną.
17
Content available Irreversibility of Friction and Wear Processes
EN
Ways of energy dissipation by friction are analysed from a thermodynamic perspective. The non-equilibrium and irreversibility of processes in tribological systems are found to be sufficient conditions for Energy dissipation. M. Planck’s currently prevailing opinion that mechanical work can be converted into heat without limitations, e.g., by means of heat, is demonstrated not to apply to the friction of solids subject to wear. Ranges of work conversion into friction heat are determined. The generation of tribological wear particles is dependent on work of mechanical dissipation and its components – surface and volume work. A friction pair or its fragments, where energy is directly dissipated, are treated as open thermodynamic systems. The processes in place are described with the first law of thermodynamics equation. The effect of friction heat and the work of mechanical dissipation on variations of internal energy, enthalpy, and energy transferred to the environment as heat are defined. These dependences should be addressed when planning and interpreting tribological tests.
PL
W artykule zanalizowano sposoby rozpraszania energii przez tarcie z punktu widzenia termodynamiki. Stwierdzono, że nierównowaga i nieodwracalność procesów zachodzących w układach tribologicznych jest warunkiem wystarczającym do wystąpienia rozpraszania energii. Wykazano, że obwiązująca współcześnie opinia M. Plancka, że pracę mechaniczną można zamienić na ciepło bez ograniczeń, np. przez tarcie, nie dotyczy przypadków tarcia ciał stałych podlegających zużywaniu. Ustalono zakresy zamiany pracy na ciepło tarcia. Powstawanie cząstek zużycia tribologicznego uzależniono od pracy dyssypacji mechanicznej i jej elementów składowych – pracy powierzchniowej i objętościowej. Para cierna lub jej fragment, w którym rozpraszanie energii następuje bezpośrednio, potraktowano jako otwarty system termodynamiczny. Zachodzące procesy opisane zostały równaniem pierwszej zasady termodynamiki. Określono wpływ ciepła tarcia i pracy mechanicznej dyssypacji na zmiany energii wewnętrznej, entalpii i energii przekazywanej do otoczenia na sposób ciepła. Te zależności należy wziąć pod uwagę przy planowaniu testów tribologicznych i ich interpretowaniu.
EN
This article presents a mathematical model of a planar system for the multipoint, oblique, and eccentric impact of rough bodies. The created model served for numerical investigations of the system’s behaviour. To analyse the influence of various parameters, three simplified cases were defined. Each of these cases focused on different aspects of the simulation. The first case was used to determine how many contacting bodies undergo impact at a given time point. This result was then compared with the experimental observations, which gave good agreement. The second case investigated the influence of the body configuration and the coefficient of friction (COF) on the sliding process during impact. Depending on the parameter values, the sliding process was divided into three main areas: slip-reversal slip, stick-slip, and continuous slip with increasing sliding velocity. The third case focused on the energy dissipation expressed by the coefficient of restitution (COR) and the angle of incidence of the initiating impact; this case showed possible improvement areas of the used impact force model.
PL
W artykule przedstawiono model matematyczny płaskiego zderzenia wielopunktowego. Konfiguracja zderzających się ciał pozwalała na wystąpienie zarówno zderzenia mimośrodowego jak i ukośnego oraz uwzględniała tarcie. Opracowany model posłużył następnie badaniom symulacyjnym. W celu przeanalizowania wpływu różnych parametrów na zachowanie systemu zdefiniowano trzy uproszczone przypadki. W pierwszym badano, jaka ilość ciał bierze jednocześnie udział w zderzeniu. Przeprowadzone porównanie otrzymanych wyników z obserwacjami eksperymentu pokazało dobrą zgodność. W drugim przypadku badano wpływ konfiguracji zderzających się ciał oraz współczynnika tarcia na przebieg procesu poślizgu w trakcie zderzenia. W zależności od wartości parametrów możliwe są trzy główne scenariusze: poślizg–zmiana kierunku poślizgu, poślizg–zatrzymanie poślizgu, ciągły poślizg ze wzrastającą prędkością poślizgu. Trzeci przypadek skupiał się na dyssypacji energii wyrażonej poprzez współczynnik restytucji oraz kierunku uderzenia inicjującego; przypadek ten pokazał obszary, w których wykorzystany model siły zderzenia wymaga dopracowania.
EN
When designing dam spillway structures, the most significant consideration is the energy dissipation arrangements. Different varieties of baffle blocks and stilling basins have been used in this context. However, the hydraulic jump form of stilling basin is considered to be the most suitable. The main objective of this research was to introduce four different baffle block shapes (models arranged from A to D, installed at slopes 0.00, 0.04, 0.06 and 0.08 in the stilling basins). To illustrate the consequences for the qualities of pressure-driven bounce, each model was attempted in the bowl. The trials applied Froude numbers between 6.5 and 9.2. The puzzle square model D provided the best outcomes compared to the models A, B, C and smooth. Model D with different models at inclines 0.00, 0.04, 0.06 and 0.08 was used to consider the impacts of perplex hinders on water driven-bounce when bed slants were changed. When the model D baffle used instead of a smooth bed at 0.08 slope, the reduction in y2 / y1 reached 12.8%, and Lj / y1 was 18.9%. Among the different bed slopes, a normal decrease in y2 / y1 ranged from approximately 10.3%, whereas the normal decrease in Lj / y1 was about 13.8% when the model D baffle was used instead of the model A baffle with a horizontal slope bed of 0.00. The results show that the new shapes led to a decrease in sequent profundity proportion and length of jump proportion; however, the energy dissipation proportion increased.
EN
In this work, a FEM dynamic analysis of the energy absorbing system was carried out on the example of a thin-walled column loaded with impact of mass. The results of the numerical analysis of the impact of the column cross-sectional shape and the notch on the amount of impact energy absorbed are presented. Modeling of phenomena occurring during impact is a very complex task, because it is necessary to analyze a complicated process in which geometric and physical nonlinearities and contact problems occur. Model preparation and calculation using the finite element method (FEM) is currently the most reliable method of modeling impacts. The results of numerical analyzes discussed in the paper were carried out using the special MSC.Software.
PL
W niniejszej pracy przeprowadzona została analiza dynamiczna układu pochłaniającego energię na przykładzie cienkościennej kolumny, obciążonej udarem masy. Przedstawiono wyniki analizy numerycznej wpływu kształtu przekroju poprzecznego kolumny oraz karbu na wielkość pochłoniętej energii uderzenia. Modelowanie zjawisk zachodzących podczas uderzenia jest bardzo złożonym zadaniem, gdyż należy przeprowadzić analizę procesu, w którym następują nieliniowości geometryczne i fizyczne oraz problemy kontaktu. Przygotowanie modelu i przeprowadzenie obliczeń przy użyciu metody elementów skończonych (MES) jest aktualnie najbardziej wiarygodną metodą modelowania uderzeń. Omówione w pracy wyniki analiz numerycznych uzyskano przy wykorzystaniu specjalistycznego programowania firmy MSC.Software.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.