Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  elliptic Hohmann transfer with plane change
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Optimal generalized Hohmann transfer with plane change using lagrange multipliers
EN
The optimized orbit transfer of a space vehicle, revolving initially around the primary, in a similar orbit to that of the Earth around the Sun, in an elliptic trajectory, to another similar elliptic orbit of an adequate outer planet is studied in this paper. We assume the elements of the initial orbit to be that of the Earth, and the elements of the final orbit to be that of an outer adequate planet, Mars for instance. We consider the case of two impulse generalized Hohmann non coplanar orbits. We need noncoplanar (plane change) maneuvers mainly because: 1) a launch-site location restricts the initial orbit inclination for the vehicle; 2) the direction of the launch can influence the amount of velocity the booster must supply, so certain orientations may be more desirable; and 3) timing constraints may dictate a launch window that isn’t the best, from which we must make changes[3]. We used the Lagrange multipliers method to get the optimum of the total minimum energy required ΔVT , by optimizing the two plane change angles 1 and 2, where 1 is the plane change at the first instantaneous impulse at peri-apse, and 2 the plane change at the second instantaneous thrust at apo-apse. We adopt the case of Earth - Mars, as a numerical example.
2
EN
We investigate in this article the optimized orbit transfer of a space vehicle, revolving initially around the primary, in a similar orbit to that of the Earth around the Sun, in an elliptic trajectory, to another similar elliptic orbit of an adequate outer planet. We assume the elements of the initial orbit to be that of the Earth, and the elements of the final orbit to be that of an outer adequate planet, Mars for instance. We assume the elements of the two impulse Hohmann generalized configuration (the case of elliptic, non coplanar orbits) to be a1, e1, a2, e2, aT, eT. From the very beginning, we should assign θ = α 1 + α 2, the total plane change required. α 1 is the plane change at the first instantaneous impulse at peri-apse, which will be minimized, and α 2 the plane change at the second instantaneous thrust at apo-apse.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.