Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  cooling unit
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono trzy warianty koncepcji agregatu chłodniczego w układzie zamkniętym. Agregat będzie przeznaczony do chłodzenia silników elektrycznych w obudowach przeciwwybuchowych, wyposażonych w wodny układ chłodzenia. Ze względu na konieczność ograniczenia zużycia wody, zdecydowano się na układ zamknięty, w którym pompa tłoczy medium chłodnicze ze zbiornika poprzez obiekty chłodzone i chłodnicę z powrotem do zbiornika. Napęd pompy i wentylatora chłodnicy zasilono z jednego silnika elektrycznego w wykonaniu ATEX.
EN
Three variants of the closed circuit cooling unit concept are presented. The cooling unit with water cooling system is designed for cooling the electric motors in anti-explosion enclosures. Due to the need to reduce water consumption, a closed circuit system was used, where the pump pushes the coolant from the tank through the cooled objects and radiator and then back to the tank. The pump and the radiator fan is powered by an electric motor in ATEX manufacture.
PL
W opracowaniu skupiono się na możliwości zastosowania rachunku kosztów cyklu życia do oceny efektywności pracy agregatu chłodniczego stosowanego w systemach klimatyzacji górniczej. Stosowanie tych urządzeń w warunkach występowania zagrożeń jest niezbędne, tak więc kopalnie staja przed problemem wyboru typu urządzenia, a nie decyzją samego jego zakupu. Analiza kosztów w cyklu życia agregatu chłodniczego z punktu widzenia klienta powinna być zatem przedmiotem wartościowania urządzeń o najniższym całkowitym koszcie użytkowania, w całym cyklu życia, a nie tylko o najniższej cenie.
EN
Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system’s core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.
PL
Aby zapobiec zagrożeniom spowodowanym wysokimi temperaturami panującymi w podziemnych kopalniach w Chinach, zaprojektowano zestaw chłodzący ZL400 składający się z pół-hermetycznej sprężarki śrubowej o wydajności 400 kW. W pracy omówiono zasady działania zestawu chłodzącego, jego budowę oraz parametry techniczne. Przy wykorzystaniu specjalnie do tych celów zbudowanej platformy testowej, działanie zestawu zostało szczegółowo zbadane. Wyniki wskazały, że działanie zestawu jest stabilne, wydajność chłodzenia w warunkach testowych pod ziemią wyniosła 420 kW a współczynnik pracy wyniósł 3.4. W celu zapobiegania zagrożeniom spowodowanym przez nadmierne temperatury w rejonie przodka nr 16305 w kształcie litery U w kopalni węgla Jining 3, zaprojektowano układ klimatyzacji, którego głównym elementem jest zestaw chłodzący ZL400. W pracy przedstawiono charakterystyki przepływu strumienia powietrza w strefie mieszania i w strefie chłodzenia dla zestawu chłodzącego umieszczonego w rejonie wlotu powietrza. Analizy przepływu powietrza (chłodzenie, mieszanie, ogrzewania) opisano przy pomocy przebiegów i-d. Dzięki układowi chłodzenia obniżono temperatury termometru suchego w rejonie przodka średnio o 3°C, a maksymalnie o 3.8°C, zaś temperatura termometru wilgotnego obniżyła się średnio o 3.6°C, a maksymalnie o 4.8°C. Jednocześnie obniżeniu uległa wilgotność powietrza, średnio o 5%, a maksymalnie o 8.6%. Zastosowanie zestawu chłodzącego ZL400 w warunkach roboczych daje określone efekty i przyczynia się do rozwiązania problemu zagrożeń spowodowanych nadmiernymi temperaturami w kopalniach chińskich poprzez poszukiwania skutecznych technik i sprzętu.
EN
The paper describes the design and results of operating measurements of the GMC-1000 and GMC- 2000 Mine Cooling Units. The first part describes the design of the cooling unit and its key components: the chiller, evaporator, condenser, oil cooler, evaporative water cooler and gallery air cooler. The possibilities of use in central air conditioning systems of underground mines are described. The second part discusses the results of the workstation and operating measurements and determines the coefficients for evaluating the performance of the mine cooling unit.
PL
Wraz ze wzrostem głębokości eksploatacji pogarszają się warunki pracy w wyrobiskach podziemnych, a w szczególności warunki klimatyczne związane ze wzrostem temperatury. Przy temperaturach pierwotnych górotworu przekraczających 40°C utrzymanie temperatury w wyrobiskach eksploatacyjnych poniżej wartości 28°C, uznawanej za wartość dopuszczalną ze względu na warunki pracy załogi, wymaga, oprócz zwiększonej wydajności wentylacji wyrobisk, także ich klimatyzacji. Można znaleźć wiele prac dotyczących tych zagadnień. Problemów klimatyzacji i chłodzenia wyrobisk dotyczą między innymi prace: Filka i jego zespołu (1999, 2002, 2004, 2006), Łuska i Nawrata (2002), Kalukiewicza i jego zespołu (2008). W krajowym górnictwie dotyczy to zarówno kopalń węgla kamiennego, jak też rud miedzi. W większości przypadków konieczność utrzymania wymaganych warunków klimatycznych w rejonie, przy jednoczesnym nacisku na ekonomiczną stronę procesu pozyskiwania kopalin, powodują konieczność stosowania klimatyzacji grupowej przy zastosowaniu urządzeń o dużej wydajności zlokalizowanych na dole kopalni. W niniejszym artykule omówiono wybrane zagadnienia doboru urządzeń klimatyzacji grupowej na przykładzie urządzenia chłodniczego GMC-1000 i GMC-2000. Konstrukcję urządzenia opracowano w firmie EUROTECH Sp. z o.o. przy współpracy z pracownikami Katedr Maszyn Górniczych Przeróbczych i Transportowych oraz Systemów Energetycznych i Urządzeń Ochrony Środowiska Wydziału Inżynierii Mechanicznej i Robotyki Akademii Górniczo-Hutniczej w Krakowie w ramach projektu dofinansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego. Górnicze urządzenie chłodnicze jest przeznaczone do chłodzenia powietrza wentylacyjnego w chodnikach wydobywczych kopani podziemnych. Znajduje zastosowanie wszędzie tam, gdzie panują trudne warunki wydobywcze powodowane między innymi dużymi obciążeniami cieplnymi. Wysokie temperatury utrudniają prace górnicze. Powodują konieczność skrócenia czasu przebywania pracowników w rejonach o najwyższych temperaturach. W połączeniu z zapyleniem i wilgotnością stanowią istotny problem przy eksploatacji maszyn i urządzeń ścianowych. Agresywna atmosfera powoduje znacznie szybsze zużycie sprzętu. Problemy te uzasadniają konieczność stosowania systemów chłodzenia powietrza bezpośrednio w rejonach, w których prowadzone jest wydobycie. Górnicze urządzenie chłodnicze GMC stanowi kompletny system chłodzenia powietrza wentylacyjnego w chodnikach wydobywczych. Realizowane zadania powodują, że system ten musi być rozbudowany pod względem technicznym jak również przestrzennym. Część zadań stawianych przed urządzeniem chłodniczym jest realizowana w znacznej odległości od chodników wydobywczych. Dotyczy to przygotowania wody chłodzącej, która służy do schładzania powietrza w chłodnicach ścianowych. Woda z rejonu jej schładzania przepływa rurociągami do rejonów wydobywczych, gdzie jest wykorzystywana do chłodzenia powietrza. Urządzenie pracuje w układzie zamkniętym. Należy zwrócić uwagę, że system chłodzenia musi spełniać wszystkie wymagania określone przez odpowiednie przepisy górnicze dotyczące zasad eksploatacji i bezpieczeństwa. Podstawowymi elementami górniczego urządzenia chłodniczego są następujące aparaty (rys. 1): agregat chłodniczy, chłodnica wyparna wody, chłodnica chodnikowa powietrza. Wymienione aparaty są urządzeniami, w których następują przepływy ciepła. Mają one różny charakter w zależności od przeznaczenia danego elementu. Urządzenie chłodnicze jest uzupełnione dodatkowymi elementami, które są niezbędne do jego prawidłowego funkcjonowania. Do grupy tej należą maszyny z układami napędowymi wymuszające przepływy czynników w poszczególnych wymiennikach ciepła. Mamy tutaj wentylatory i sprężarki czynników gazowych oraz pompy do wody jak również cieczy technologicznych. Urządzenie chłodnicze musi być wyposażone w dodatkowy sprzęt i aparaturę kontrolno-pomiarową. Konieczne są filtry do gazu i cieczy. Czujniki przepływu, temperatury i ciśnienia. Schemat górniczego urządzenia chłodniczego z opisem poszczególnych elementów jest pokazany na rysunku 1. W ramach projektu celowego nr 6 ZR8 2007C/06934 wykonane zostało Górnicze Urządzenie Chłodnicze przeznaczone do klimatyzacji grupowej (centralnej) w kopalniach podziemnych. Konstrukcję urządzenia opracowano w firmie EUROTECH Sp. z o.o. przy współpracy z pracownikami Katedry Maszyn Górniczych Przeróbczych i Transportowych oraz Katedry Systemów Energetycznych i Urządzeń Ochrony Środowiska Wydziału Inżynierii Mechanicznej i Robotyki Akademii Górniczo-Hutniczej w Krakowie. Prototyp urządzenia był badany w WUCH „PZL - Dębica” S.A., następnie przeszedł próby ruchowe w O. ZG „ Rudna”. Obecnie kilka egzemplarzy górniczego urządzenia chłodniczego jest eksploatowanych w kopalniach węgla kamiennego. Prototyp urządzenia GMC-1000 miał moc chłodniczą 1000 kW, wykonano również egzemplarz GMC-2000 o mocy chłodniczej 2000 kW. W tabelach 1-3 przedstawiono wyniki pomiarów agregatu GMC-1000 przeprowadzonych na prototypie oraz wyniki uzyskane w czasie eksploatacji w Kopalni Węgla „Rydułtowy-Anna”, tabela 4 zawiera wyniki uzyskane w czasie eksploatacji urządzenia GMC-2000 w Kopalni Węgla „Bielszowice”. Urządzenie chłodnicze w kopalni „Rydułtowy- Anna” pracuje od lutego 2009. W trakcie prób, za pomocą regulatora wydajności, zmieniano wydajność sprężarki chłodniczej. Regulator wydajności zapewnia płynną regulację strumienia od 0% do 100%. Ilość sprężanych par czynnika R134a w danej chwili, a tym samym zmianę wydajności sprężarki, uzyskuje się za pomocą sterowanego hydraulicznie suwaka regulacji wydajności. Temperatura wody lodowej dopływającej do parownika (tw5) była stabilna w trakcie poszczególnych pomiarów, ale specyfika stanowiska nie pozwalała na utrzymanie stałej wartości temperatury dla kolejnych prób. Wynikał stąd rozrzut wartości tw5 w granicach 11,1°C do 17,4°C. Kolejną wielkością regulowaną była temperatura parowania to (cienienie parowania), która w trakcie pomiarów była zmieniana w granicach -1,4°C do +1,4°C. Badania eksploatacyjne miały na celu sprawdzenie przydatności agregatu do pracy w warunkach kopalnianych. Poszczególne próby były realizowane przy różnych wartościach nastaw i wielkości wejściowych układu. Brak możliwości ustalenia wartości wybranych parametrów wynikał z faktu przeprowadzania pomiarów w czasie prowadzenia prac wydobywczych w O.ZG „Rudna”. Wartości wielkości wejściowych zależały od chwilowego stanu obciążeń i warunków otoczenia. Temperatura wody lodowej dopływającej do parownika była stabilna w trakcie poszczególnych pomiarów (tylko te były przyjmowane jako reprezentatywne), ale zmieniała się ze względu na współpracę agregatu z działającymi w wyrobisku chłodnicami powietrza. Temperatura tw5 zmieniała się w granicach 12,7°C÷19,1°C. Kolejną wielkością regulowaną była temperatura parowania to (ciśnienie parowania), która w trakcie pomiarów zmieniała się w granicach -1,1°C. Uzyskane przez górniczą maszynę chłodniczą GMC-1000 i GMC-2000 wartości parametrów pracy na stanowisku badawczym i przy próbach ruchowych potwierdziły przyjęte założenia projektowe. Wartości parametrów założone na etapie projektowania zostały osiągnięte w trakcie badań stanowiskowych. Założona moc chłodnicza wynosiła 1000 kW, w czasie pomiarów udało się osiągnąć moc chłodniczą 1250 kW. Moc ta została osiągnięta przy 100% nastawie suwaka regulującego przepływ czynnika chłodniczego przez sprężarkę i spadku temperatury wody lodowej w parowniku 11,4 K. Wynik ten daje 25% zapas mocy chłodniczej względem mocy chłodniczej nominalnej, spadek temperatury wody lodowej, w tym przypadku, jest mniejszy o 15,5% w stosunku do założonego. Zapas mocy jest większy w stosunku do niedoboru spadku temperatury oznacza to, że możliwe jest osiągnięcie wymaganego spadku temperatury nawet przy mniejszych mocach chłodniczych. Stwarza to możliwość regulacji parametrów pracy urządzenia chłodniczego w szerokim zakresie. W kilku pomiarach uzyskane temperatury schłodzenia wody były korzystniejsze niż to założono na etapie projektowania GMC. Szerokie przedziały zmienności wartości parametrów stwarzają duże możliwości sterowania pracą górniczych maszyn chłodniczych GMC-1000 i GMC-2000. Osiągnięcie wymaganego stopnia schłodzenia wody lodowej pozwoli na wymagane schłodzenie powietrza w chłodnicy ścianowej. Rezultaty uzyskane w czasie prób stanowiskowych, ruchowych i eksploatacji w kopalniach pozwalają na stwierdzenie, że górnicza maszyna chłodnicza może być eksploatowana w centralnych układach klimatyzacyjnych kopalń podziemnych.
PL
Wykorzystanie diagnostycznych systemów informatycznych dzięki analizie sygnałów pochodzących z urządzenia pozwala na efektywne sterowanie pracą transformatora. Rosnące koszty eksploatacji maszyn i urządzeń sprawiają, że istotnym kryterium konkurencyjności oprogramowania są aspekty ekonomiczne. W pracy przedstawione zostały sposoby obniżenia kosztów eksploatacji transformatorów sieciowych poprzez optymalizację sterowania układami chłodzenia.
EN
The usage of diagnostic systems, which analyze signals coming from the device, allows effective control of the work of the transformer. The increasing operating costs of machinery and equipment make economic aspect an important criterion for the competitiveness of the software. The paper presents the ways of reducing operating costs by optimizing cooling of network transformers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.