Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 136

Liczba wyników na stronie
first rewind previous Strona / 7 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  computational fluid dynamics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 7 next fast forward last
EN
Check valves are critical components of fluid systems and have various applications, including house appliances. This article presents a methodology for mapping geometry-specific constriction pressure loss as a function of flow and turbulence in a check valve. This study aimed to gain insight on which Ansys Fluent available turbulent energy dissipation model should be used for further design optimization. This methodology consists of a statistical comparison of computational fluid dynamics (CFD) simulation results obtained using the turbulent energy dissipation models. The key components of the simulation process are discussed. The study’s main results are a comparison of empirical results among flow models’ estimated pressure loss, shown as a function of flow rate in specific geometry and identification of the most suitable model for the considered application. This study concludes that the K-Epsilon (Standard) model best represents the empirically measured behavior of naturally occurring flow energy losses in the considered geometry.
EN
In the presented paper, two different meshing strategies are compared to show the accuracy advantage of properly constructed mesh. For this purpose, it was necessary to automatize simulation process, in order to perform a number of calculations without the necessity of user interaction. Later, a method of results extrapolation as well as a way of judging mesh quality are introduced for more throughout comparison of presented discretization strategies. The latter method, called grid convergence index, is also used to calculate probability range of accurate result. To conclude, outcomes of this study are in agreement with general opinon on pracitces for an accurate CFD result. Structured O-type mesh with refinement at wall boundaries (often referred to as “inflation layers”) performs better than simple free mesh.
EN
Heart failure is a chronic and progressive condition characterized by the heart’s inability to pump sufficient blood to meet the body’s metabolic demands. It is a significant public health concern worldwide, associated with high morbidity, mortality, and healthcare costs. For advanced heart failure cases not responding to medical therapy, heart transplantation or mechanical circulatory support with ventricular assist devices (VADs) can be considered. In the specific case of bi-ventricular heart failure a replacement of both ventricles is required. In this context a Total Artificial Heart (TAH) may be proposed as a bridge to transplant solution. Additionally, bi-ventricular assist devices (BiVADs) are available to support both ventricles simultaneously. However Bi-ventricular heart failure management is difficult with poor outcomes. New surgical procedures appear to propose solutions after both ventricle failure. One of these intervention uses two continuous-flow VADs as a total artificial heart after cardiac explantation due to myocardial sarcoma. Unfortunately, this procedure makes patient management very difficult as pulmonary pressures and flow rate are no longer measurable after the surgical procedure. The setting of both pumps is hence a complex task for patient management. This article aims at helping clinicians on patient management undergoing double assistance after cardiac explantation by predicting the different outcomes on the vascular grid for all the possible rotational speed combination using a lumped model. Results provide a range of both pump operating conditions suitable for delivering a physiologically adapted flow to the vascular grid when combined with hypotensive treatments.
4
Content available CFD Study of Base Drag of the Grot Rocket
EN
Propulsion system operation is known to affect the aerodynamic characteristics of rockets. Specifically, the net axial force acting on a rocket in flight cannot be precisely obtained by combining the static thrust with drag values computed for a rocket with an inactive motor. One of the main reasons for this is the influence of motor operation on pressure at the base of the rocket. The aim of this paper is to investigate the effect of motor operation on the aerodynamic parameters of the Grot sounding rocket developed by the Students’ Space Association, Warsaw University of Technology. The study consists of two series of axisymmetrical computational fluid dynamic simulations of flow around the rocket - one with the motor being non-operational and the other with active thrust. In the post-processing phase, the axial force acting on various components of the rocket is computed, with an emphasis on the base and nozzle exit sections. Quantitative and qualitative differences between the cases with and without active thrust are highlighted and discussed. The obtained results are compared to a semi-empirical model found in the literature. Finally, a semi-empirical base drag model is proposed for use in Grot flight simulation.
EN
The evaluation of wind effect on the regular shape and simple diaphragm buildings and structures due to wind load has been calculated by several international codes and standards where wind gust nature and dynamic effect could not capture. Bangladesh National Building Code (BNBC) provides the tools for engineers to calculate the wind pressures for the design of a regular-shaped structure with a height to width ratio of less than 5.0, a simple diaphragm, and no unusual geometrical irregularity. If these conditions do not satisfy a wind tunnel testing is required. In this study, a comparative study between two codes in Bangladesh (BNBC-2006 and BNBC-2020), and wind tunnel test results are conducted. An investigation is carried out on four typical buildings with variable heights located within Dhaka, Bangladesh. A computational fluid dynamics (CFD) program RWIND is used to calculate the wind loads on buildings and are compared with those obtained by Bangladesh National Building Codes. Storey shear of four different building models is compared. Between BNBC-2006 and BNBC-2020, there is up to a 53% difference in storey shear. Whereas, up to 30% variation in storey shear is observed between the numerical wind tunnel test data and the data calculated using the BNBC-2020 equations. Finally, this study will help in improving BNBC code provisions for wind load calculations.
PL
Kalkulację wpływu wiatru na budynki i budowle o regularnych kształtach i prostych konstrukcjach pod obciążeniem wiatrem przedstawiono w kilku normach międzynarodowych, w których jednak nie uwzględniono charakteru podmuchów wiatru i efektu dynamicznego. Bangladeska Krajowa Norma Budowlana (BNBC) zapewnia inżynierom narzędzia do obliczania ciśnienia wiatru przy projektowaniu konstrukcji o regularnym kształcie, o stosunku wysokości do szerokości mniejszym niż 5,0, prostej konstrukcji oraz bez nietypowych nieregularności geometrycznych. Jeśli warunki te nie są spełnione, wymagane jest przeprowadzenie testów w tunelu aerodynamicznym. W niniejszym opracowaniu przeprowadzono badanie porównawcze między dwiema normami obowiązującymi w Bangladeszu (BNBC-2006 i BNBC-2020) oraz wynikami testów w tunelu aerodynamicznym. Badanie przeprowadzono na czterech typowych budynkach o różnej wysokości zlokalizowanych w Dhace w Bangladeszu. Program RWIND do obliczeń i symulacji dynamiki płynów (CFD) został wykorzystany do obliczenia obciążeń wiatrem na budynkach i porównany z wynikami uzyskanymi według bangladeskich norm budowlanych. Porównano ścinanie kondygnacji czterech różnych modeli budynków. W tym względzie różnice pomiędzy BNBC-2006 i BNBC-2020 wynoszą do 53%. Natomiast między danymi z numerycznego testu w tunelu aerodynamicznym a danymi obliczonymi przy użyciu równań BNBC-2020 zaobserwowano do 30% różnic w odniesieniu do ścinania kondygnacji. Badanie to pomoże też ulepszyć przepisy norm BNBC dotyczące obliczeń obciążenia wiatrem.
EN
The volume of the stilling basin can be reduced, energy can be dissipated, and floods can be contained with the help of spillways. The aim of this Computational Fluid Dynamics (CFD) study is to investigate how compound slopes change water flows through spillways. To measure turbulence, the Realizable k-ε model was used, and the multiphase volume of fluid (VOF) method was utilized to determine where air and water meet. Five models of spillways with different slopes (normal slope (MS1) = 30°, compound slope(MS2 and MS3) = 20°/39°, and compound slope (MS4 and MS5) = 39°/20°) were modelled and simulated using the ANSYS Fluent software to determine their flow characteristics. Numerical simulation results were compared to experimental results, and it was found that the CFD model captured the key flow aspects accurately. The numerical model carefully observes the several flow patterns (nappe, transition, and skimming) that emerged owing to variations in slope and geometry. When it comes to dissipating energy, models with a compound slope (39°/20°) do the best. When compared to the normal slope model (30°) with a step size of 10, the increase in energy dissipation is 14%. According to the findings, the TKE (turbulent kinetic energy) was elevated by the compound slope. The results of this research show that the spillway can be operated effectively and reliably under a wide range of flow conditions, fulfilling an important goal of the project.
EN
The paper presents the results related to the simulation of dust-separating tangential cyclones: single cyclones of various geometries, and an axial multi-cyclone with fixed geometries and components. Its goal was to apply low-cost analyses for cyclones in industrial realization. Therefore, the presented research was applied with simulation methodology as a problem of Computational Fluid Dynamics. The models were analyzed using SolidWorks Flow Simulation software. The presented dust collectors are real-life objects, applied in industrial facilities. For a multi-cyclone, the increase in the number of blades, from 5 to 8, together with the change in the angle of a blade’s pitch i.e., 30° and 45°, resulted in dust concentration along the internal walls from just 10% for 5 blades up to c.a. 37.5% for 6 blades, and c.a. 50% for 8 blades, whereas the dust concentration in the device’s central part equals c.a. 20% for the last option. The model validation draws attention to the potential applicability of the software in flow issues alongside common and more complex numerical environments.
EN
An autonomous underwater vehicle is a vehicle that can move in water, which is also known as an unmanned undersea vehicle. One type is the hybrid underwater glider where the vehicle is designed in such a way that it is able to carry out missions in the water with less power consumption so that it can last a long time in carrying out missions. In this research, a mathematical design is carried out in the form of a nonlinear model with the aim of being able to produce a model in the longitudinal movement of the HUG vehicle which will be tested limited to a simulation using the MATLAB/Simulink program. The parameters used in the model for this longitudinal movement are obtained by the computational fluid dynamics method so that it has been simulated with various movements according to the mission of the vehicle. In the simulation, input is given in the form of variations in the value of the actuator force to be able to carry out movements according to the mission and the simulation is open loop so that the vehicle's response is in the form of position and speed of translation and rotation.
EN
The analyses aim to determine aerodynamic force coefficients in the case of airflow around two smooth or rough cylinders positioned at different angles to the direction of wind velocity. Such systems, for instance, may be part of a tubular water slide. The results were compared with the values of the interference coefficient of the cylinders arranged in a row included in Eurocode EN 1991 part 4. The aerodynamic forces of the cylinder systems were determined on the basis of experimental tests conducted in a wind tunnel. To verify the above results, CFD (computational fluid dynamics) simulations were prepared. An important observation is that for the angle of yaw β = 0◦, the negative component of the lift force (lateral) fy is shown, while for the other cases, the situation is opposite and the lateral force points outside the gap (upward). The second is that the results of aerodynamic drag for rough cylinders arranged in a row and calculated according to EN 1991 part 4 may be underestimated. The flow around the pair of smooth cylinders is quite different from that of the rough ones, because during the experiment the first falls into the critical flow regime, while the second has supercritical characteristics.
EN
Coronary stenosis is mainly responsible for myocardial ischemia as the blood supply to a portion of the heart stops or is severely reduced. The Fractional Flow Reserve is the benchmark for the hemodynamic significance assessment of coronary stenoses. Its value is employed as a gatekeeper/planning tool for revascularization in clinical practice. Non-invasive alternatives have been successfully proposed to guide cardiologists. However, simulation values are not accurate enough in the 0.75-0.85 range, so invasive Fractional Flow Reserve should be used. Several authors argue about where distal pressure should be measured. Therefore, our aim is to use simulation to assess how this value changes and to detect the correct measurement region. First, we have adjusted the simulation method to the segmentations of two patients whose invasive Fractional Flow Reserve is known. We then extended our analysis to four patients and obtained the simulated value at multiple points distal to the stenosis. This is an advantage over invasive measurements, whose locations are restricted. The results are also essential for locating the best region for invasive distal pressure measurements. We propose a hybrid invasive and in-silico procedure that would avoid false results and prevent cardiologists from making erroneous clinical decisions.
EN
In determining the effects of actions when designing road structures, the influence of the loads caused by the buffeting of the passing vehicles (high-cycle forces) is neglected. Taking into account the fatigue load, they can have a very large impact on the assessment of the load capacity. The subject of analysis is the pressure and velocity distributions around a truck. At the current stage of the work, it can be concluded that the gusts of passing trucks affect the dynamics of the gantry structure and the elements suspended on it, such as platforms or boards. There is a strong suction force. It is possible to simplify the model in such a way that the board and the wind move with the speed of the vehicle while the truck remains stationary. Due to the lack of reliable guidelines for strength calculations of such structures, advanced Computational Fluid Dynamics (CFD) tools were used. This paper also presents a shaking table built by the authors for dynamic loading of structural models. It describes the construction of the shaking table and the kind of movement made by the table deck. It also shows a scheme of the table deck suspension on linear bearings, as well as a scheme of the table motion system.
PL
Przy określaniu skutków oddziaływań przy projektowaniu obiektów drogowych pomija się wpływ obciążeń wywołanych podmuchami od przejeżdżających pojazdów (siły wysokocyklowe). Biorąc pod uwagę również obciążenie zmęczeniowe, mogą one mieć bardzo duży wpływ na ocenę nośności konstrukcji. Przedmiotem analizy są rozkłady ciśnień i prędkości wokół samochodu ciężarowego. Na obecnym etapie prac można stwierdzić, że podmuchy od przejeżdżających ciężarówek wpływają na dynamikę konstrukcji bramownicy i zawieszonych na niej elementów, takich jak pomosty czy tablice. Istnieje duża siła ssąca. Możliwe jest uproszczenie modelu w taki sposób, aby tablica i wiatr poruszały się z prędkością pojazdu, podczas gdy ciężarówka pozostaje nieruchoma. Ze względu na brak rzetelnych wytycznych do obliczeń wytrzymałościowych takich konstrukcji, zastosowano zaawansowane narzędzia obliczeniowej mechaniki płynów (CFD). W artykule przedstawiono również zbudowany przez autorów stół wstrząsowy do dynamicznego obciążania modeli konstrukcyjnych. Opisano w nim konstrukcję stołu oraz rodzaj ruchu, jaki wykonuje płyta stołu. Przedstawiono również schemat zawieszenia płyty stołu na liniowych łożyskach oraz schemat układu ruchu stołu.
EN
Additive manufacturing methods are becoming more and more popular in today’s production market. These methods became a useful and flexible alternative to traditional manufacturing approach. One of the most popular methods in this family is Direct Metal Laser Melting. It can achieve high quality prints, however, numerous parameters need to be established, to achieve a good quality product. One of the aspects of printing process is inert gas flow. The goal of presented study is to quantitatively assess inert gas flow field using both experimental and numerical methods. Flow field parameters have been measured with anemometry and Particle Image Velocimetry. Additionally Computational Fluid Dynamics tools were used to investigate flow phenomena occurring inside the build chamber. PIV measurements give good insight into the flow field, but they are costly and require significant time for preparation. For this reason, CFD analysis is widely used as a design tool, giving reasonable turnaround time. In addition, every design tool to be reliable need to be validated against test data. In this study the team was able to collect both experimental and numerical data and finally conduct the validation. Work allowed to determine the most suitable approach for predictions in given problem. Different turbulence models have been tested. Simulation results were validated against collected experimental data.
EN
Stability and performance are crucial characteristics for aerospace vehicles. The ability to investigate the aerodynamics and performance of rockets gives an insight into their stability before flight and the potential for design and performance enhancements. For the past 13 years, the Rocketry Division within the students’ Space Association of Warsaw University of Technology has been developing sounding rockets of different designs and mission profiles. Two rockets have been chosen for the CFD (Computational Fluid Dynamics) campaigns, FOK and Twardowsky. This paper describes the mathematical model of aerodynamic loads used by the Division for sounding rocket simulation, followed by CFD campaigns for the two rockets. The results of the CFD analysis are then used to calculate the rockets’ aerodynamic derivatives according to a previously defined mathematical model.
EN
Aim: The purpose of this study is to verify the usability of the k-ω SST turbulence model for the description of the combustion process during a vertical propane jet fire. Simulating a jet fire using computational fluid mechanics involves an appropriate selection of a mathematical model to describe the turbulent flow. It is important as the variables from this model also describe the rate of the combustion reaction. As a result, they have an impact on the size and shape of the flame. The selection of an appropriate model should be preceded by preliminary simulations. Project and methods: For this purpose, a vertical jet fire in no wind conditions was selected for simulation. Consequently, it was possible to develop a two-dimensional axisymmetric geometry. A good numerical mesh can be applied to such axisymmetric geometry. Selected process conditions allowed to create an axisymmetric numerical grid. Its values, proving the quality, are shown in a chart demonstrating the distribution of the parameter quality depending on the number of elements from which the numerical grid was built. In the work, a two-stage model of the combustion reaction was selected in order to verify whether the area in which the mole fraction of carbon monoxide will have significant values is so large that the selected kinetic reaction model will have an impact on the flame length. Results: Three simulations of jet fire taking place in the direction opposite to the force of gravity were performed. The simulations performed allowed for setting the basic L[f] parameter, which determines the flame length. Additionally, the length of the mixing path s[lift-off], needed to initiate the combustion reaction, was determined. The simulations performed allowed for comparing significant parameters characterizing the flame with the parameters calculated using correlations included in the literature on the subject. Due to this comparison, it was possible to define an interesting scope of research work, because the length of the gas mixing path determined from the CFD simulation differed significantly from the values calculated from the correlation. Conclusions: Interestingly, such large differences between CFD results and correlations were not observed for the L[f] parameter. The correlations based on the Froude number give slightly higher values of the flame length than the results of the CFD simulation. On the other hand, the correlation based on the Reynolds number gives slightly lower values of the L[f] parameter than the values obtained from the CFD calculations. This may indicate that the effects related to the inertia forces (Re number) better describe the simulation process conditions than the correlations based on the influence of inertia forces and gravity forces (Fr number).
PL
Cel: Celem tego opracowania jest sprawdzenie przydatności modelu k-ω SST do opisu procesu spalania podczas pionowego pożaru strumieniowego propanu. Symulacja pożaru strumieniowego przy pomocy obliczeniowej mechaniki płynów wiąże się z odpowiednim wyborem modelu matematycznego służącego do opisu przepływu burzliwego. Jest to o tyle ważne, że zmienne z tego modelu opisują również szybkość reakcji spalania, a więc mają wpływ na rozmiar i kształt płomienia. Dobór odpowiedniego modelu powinien być poprzedzony symulacjami wstępnymi. Projekt i metody: Do symulacji wybrano pionowy pożar strumieniowy w warunkach bezwietrznych. Dzięki temu opracowana została dwuwymiarowa osiowosymetryczna geometria, na którą możliwe jest nałożenie dobrej siatki numerycznej. Wybrane warunki procesowe pozwoliły na stworzenie osiowosymetrycznej siatki numerycznej, której wartości świadczące o jakości uwidoczniono na wykresie przedstawiającym rozkład jakości parametru w zależności od liczby elementów, z jakich zbudowano siatkę numeryczną. Na podstawie dwuetapowego modelu reakcji spalania sprawdzono, czy obszar, w którym ułamek molowy tlenku węgla będzie miał duże wartości wpłynie na długość płomienia w wybranym modelu kinetycznym reakcji. Wyniki: Wykonane zostały trzy symulacje pożaru strumieniowego odbywającego się w kierunku przeciwnym do działania sił grawitacji. Pozwoliły one na wyznaczenie podstawowego parametru L[f] , który określa długość płomienia. Dodatkowo wyznaczona została długość drogi mieszania s[lift-off], która jest niezbędna do zapoczątkowania reakcji spalania. Wykonane symulacje pozwoliły na porównanie istotnych parametrów charakteryzujących płomień z parametrami obliczonymi przy pomocy korelacji zawartych w literaturze przedmiotu. Wnioski: Porównanie wyżej wymienionych parametrów umożliwiło określenie ciekawego zakresu pracy badawczej, ponieważ wyznaczona z symulacji CFD długość drogi mieszania gazu znacząco różniła się od wartości obliczonych z korelacji. Co ciekawe, tak dużych rozbieżności między wynikami CFD a korelacjami nie zaobserwowano dla parametru L[f] . Przy czym korelacje oparte o liczbę Froude’a podają nieco większe wartości długości płomienia niż wyniki symulacji CFD. Natomiast korelacja oparta o liczbę Reynoldsa podaje nieco mniejsze wartości parametru L[f] niż wartości otrzymane z obliczeń CFD. Może to świadczyć o tym, że efekty związane z siłami bezwładności (liczba Re) lepiej opisują warunki procesowe niż korelacje oparte o wpływ sił bezwładności i sił ciężkości (liczba Fr).
PL
Praca dotyczy matematycznego modelowania rozprzestrzeniania się zanieczyszczeń w powietrzu za pomocą obliczeniowej mechaniki płynów z wykorzystaniem modelu bilansowania pędu w fazie dyskretnej DPM (discrete phase model). Skupiono się na problemie zagęszczenia siatki numerycznej potrzebnej do tworzenia symulacji rozprzestrzeniania się zanieczyszczeń w powietrzu. Opierając się na parametrze określającym jakość numeryczną siatki, wykonano symulacje pracy pieca centralnego ogrzewania klasy I. Do określenia najlepszego stopnia zagęszczenia siatki wykorzystany został rozkład cząstek pyłu opuszczającego komin, z którego emitowane były zanieczyszczenia.
EN
A math. modeling of the operation of a class I central heating furnace was performed by computational fluid dynamics together with the DPM discrete-phase momentum balancing model. The problem of numerical mesh compaction needed to simulate the spread of pollutants in the air was focused on. Relying only on the qmesh parameter, which determines the quality of individual elements of the numerical mesh, was not sufficient. Therefore, the impact of the number of elements and the distribution of the qmesh parameter in the mesh on the obtained simulation results should be analyzed.
PL
W pracy poruszono tematykę wykorzystania analizy przepływu CFD do wyznaczania obciążeń wiatru na konstrukcje. Przedstawiono analizę trzech modeli budynków o dachu dwuspadowym o różnych kątach nachylenia, dla których dokonano porównania wielkości współczynników parcia z wynikami dostępnymi w literaturze. Obliczenia analityczne wykonano zgodnie z normą z PN-EN 1991-1-4, natomiast obliczenia numeryczne wykonano w programie R-Wind Simulation. Całość wyników podsumowano, a wnioski sformułowano w odniesieniu do tematyki rozwiązania problemu szacowania wielkości obciążenia wiatru działającego na konstrukcję.
EN
The paper addresses the use of CFD flow analysis to determine wind loads on structures. Three models of buildings with a gable roof with different angles of inclination were presented, for which the size of the pressure coefficients was compared with the results available in the literature. The analytical calculations were made in accordance with the PN-EN 1991-1-4 standard, while the numerical calculations were made in the R-Wind Simulation program. All the results were summarized and the conclusions were formulated in relation to the problem of solving the problem of estimating the size of the wind load acting on the structure.
EN
In this paper study results of selected production methods for agricultural biogas are shown and technical and technological aspects of these methods are described for monosubstrate bioreactors. Based on the available literature, modelling of mixing in bioreactors using computational fluid dynamics (CFD) was is demonstrated. As part of the research, the numerical simulation method was used with a tool that contains CFD codes. The model k-ε is used to simulate the mean flow characteristics under turbulent flow conditions. This is a two-equation model that gives a general description of turbulence. The work presents the results of numerical studies that make it possible to understand the characteristics of fluid flow in the adhesive bed used for the production of agricultural biogas. The tests showed that in the core of the adhesive bed there is a flow of 0.19 m∙s-1 , while in the outer part of the bed there is a flow in the range 0.01-0.02 m∙s-1. Taking into account the substrate inflow of 0.17 m∙s-1 (in the upper part of the fermentor), it was observed that the Klinkenberg effect for autocyclic movement (from bottom to top) takes place. The novelty in the article is the observation of the dominant flow in the core of the bed and the autocyclic flow in the opposite direction in the peripheral areas of the adhesive bed.
EN
The prediction of the total resistance occurred during operation of a floatplane on the water surface is an important aspect in developing the floater as well as the engine power required. Theoretically, the trim angle of the floater may affect the total resistance. This paper intends to find the optimal trim angle for the take-off operation using the computational fluid dynamics (CFD) software. The floater set up under a fixed trim angle includes 2◦, 5◦ and 10◦ taken in simulation at five different speeds between 9.21 m/s and 15.87 m/s. In one case of 2◦ trim angle, the floater model test has been carried out in a tow tank laboratory to validate the accuracy of the numerical result. Comparison of both results has a good fit with an average error of 2.27%. In the final simulation results, the optimum trim angle is 5◦, which produces the total resistance less than 2◦ and 10◦ of the trim angle with average differences of 9.21% and 50.46% for all speeds, respectively.
EN
Moving through water takes much more effort than walking through air, and this explains why ships travel much more slowly than automobiles and aircraft. Water is almost 1000 times denser than air, so most of the energy produced by a boat is taken up by dragging (water resistance). Hydrofoils travel much more quickly than ordinary boats, not by pushing through water but by raising the hull (the main body) of the boat upward so it can glide above the waves. Hydrofoil is one of the typical factors that affect the vortex structure and flow characteristics of hydraulic machinery. In order to enhance the utilisation efficiency of hydraulic machinery in marine energy, parallel grooves are proposed and applied to the hydrofoil. Following that, a numerical analysis is performed using the SST k- turbulence model, and the effects of the hydrofoil profile, the angle of attack and the flow are investigated. The profiles of NACA 0066, NACA 8412, NACA M2 and RAE 104 are considered for the study. The performance is analysed based on the lift to drag ratio. The best model from this is given with surface modification and the flow study is carried out at different angles of attack. The modified profile of NACA 8412 with parallel groves has shown the highest lift to drag ratio at a 12 degree angle of attack.
EN
The performance of the internal flow of the fuel injector is impeded by several factors. The nozzle is one of the factors, being typically about a millimeter long and a fraction of a millimeter in diameter. Cavitation inside the diesel injector nozzle is associated with local pressure distribution. At flow areas with sharp corners, the pressure may locally drop below vapour pressure. The aim of this study is to assess the impact of turbulence and cavitation models on the prediction of flow in diesel injection nozzle. In the present study, an analysis of an existing 6 hole mini-sac diesel injector nozzle is carried out using a CFD package. The main objective of the research is to design a nozzle to avoid cavitation and to find out the contribution of different parameters through parametric study. Cavitation is a complex phenomenon whose appearance depends on the physical as well as flow properties of the flowing substance. Thus, for a better visualization of cavitation, a 3D CFD simulation of mini-sac injector nozzle is carried out. An analysis of a single nozzle hole of a mini-sac diesel injector nozzle is considered for the analysis, as the flow is uniformly distributed through each nozzle. As the three-dimensional geometry of mini-sac nozzle is complicated, therefore tet/hybrid element with T-Grid meshing scheme is used, for good surface meshing. The analysis is carried out at injection pressure of 5 00 bar. The CFDresults are validated against test data with the maximum deviation for the mass flow rate of 8.67% at full needle lift.
first rewind previous Strona / 7 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.