Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 380

Liczba wyników na stronie
first rewind previous Strona / 19 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  combustion engines
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 19 next fast forward last
EN
The aim of the article is the material and economic assessment of the life cycle of city buses with combustion engines. As part of the analysis, the analyzed parameters were optimized using neural networks with the use of a regression model. As part of the life cycle assessment criteria, three types of Solaris Urbino buses were analyzed. As a result of the research carried out for buses, the results were obtained regarding the optimal duration of operation, the number and cost of oil, air and fuel filter changes, and the replacement period of buses. The presented research and analyzes have a significant impact on the processes of purchasing and operating city buses.
2
Content available Synthetic automotive fuels
EN
The article explains the differences between synthetic fuels of first and second generation. The potential of e-fuels to reduce GHG emissions was indicated. The application requirements that synthetic fuels need to meet in order to be used for powering internal combustion engines have been described. The possibility of using synthetic fuels as "drop-in" fuels, in blends with conventional petroleum-derived fuels as well as by themselves was discussed. E-fuels developed and optimized to power compression ignition and spark ignition engines were characterized. The possibilities of synthetic fuels to reduce emissions of regulated and unregulated exhaust components and to improve the work and operational parameters of the engine were also analyzed using the research carried out so far as basis. At the end of the article, forecasts for synthetic fuels development and applications were presented in the form of a SWOT analysis.
EN
The paper describes the results of the wear test of innovative sets of piston rings intended, among others, to drive diesel locomotives operated in North America, including the USA. The main subject of research is an innovative set of piston rings, the first sealing ring containing a synthetic diamond embedded in a porous chrome coating. The developed multilayer coating is designed to reduce the wear of the piston rings and the combustion engine cylinder. This technology has been implemented at Piston Rings Manufactory "Prima" S.A. in Łódź. The tests were carried out using a two-stroke diesel engine of the EMD 645 type. This engine is manufactured by General Motors Corporation in the United States. The described research was carried out in the United States in San Antonio, Texas, at the Southwest Research Institute. The EMD 645 engine is widely used in power units of heavy diesel locomotives and inland waterway barges in the United States of America, India, and South Africa.
4
Content available Impact of water content in fuel for smoke opacity
EN
The development of internal combustion engines is focused at solving problems like: fulfilment with increasingly stringent requirements regarding exhaust emissions and elimination of threats to the natural environment. The subject of this thesis is to assess the impact of supplying a compression-ignition engine with hydrocarbon mixtures and to examine the impact of water on external parameters of the engine, such as smoke opacity. The main tests were carried out on a 4-cylinder VW 1.9 TDI internal combustion engine at a constant engine crankshaft speed of 3000 rpm and a variable load of 0, 30, 60, 90, 120, 150 and 180 Nm. The tests were carried out using an innovative mixture of hydrated fusel oils, ethyl alcohol and ionic and/or non-ionic emulsifiers, from which was made of microemulsions with a water content in diesel oil of 5, 10, 15, 20 and 25%. The tests carried out showed a beneficial effect of the water content in the diesel oil on the reduction of the average value of smoke opacity, which systematically decreases with the increase in the percentage of water in the diesel oil.
EN
The article presents the results of tests, replaced according to the vehicle manufacturer's recommendations, of engine oils. The sample of engine oils in service came from spark-ignition and compression-ignition vehicles used in urban or mixed mode. During their collection, the type of drive unit, the mileage of the car and the number of kilometers the oil was used for were recorded for each sample (this was the main criterion for differentiating samples). In addition, a control group of samples consisting of fresh oils of the same viscosity grade and distributed by the same producer was set up to observe changes in the parameters of individual lubricants after the operating period. The first part of the empirical study consisted of determining the physico-chemical properties of the lubricants, i.e.: kinematic viscosity, density and water content. The second part involved anti-wear tests using a T-02U tribometer. The use of the tribometer made it possible to record the anti-wear parameter, i.e. moment of friction, and also the load imposed on the friction node, as a result of which it was possible to calculate the friction force and friction coefficient. The research was complemented by an analysis of worn surfaces of the friction node on a microscope. The tests carried out can be used for predictive purposes, in terms of assessing the condition of a lubricant subjected to an operating process in an internal combustion engine.
EN
The aim of this study was to verify the criteria for selecting pleated filter partitions used in passenger car engine filters. The paper presents the problem of optimizing pleated air filters in the direction of minimizing pressure drop, which is the source of engine energy losses. Two criteria for selection of a paper filter partition for specific operating conditions of the filter and the engine are presented: criterion of permissible separation speed and criterion of permissible pressure drop. The actual filtration area of 44 paper pleated filter elements used in passenger cars and the air stream flowing through the filter were determined, which made it possible to calculate separation speed. In 62% of the analyzed filter inserts, the calculated separation speeds are within the speed range recommended by the constructors, ʋFmax = 0.06-0.12 m/s. Exceeding permissible separation speed ʋFmax = 0.12 m/s was found mainly in supercharged engines. Negative effects of engine operation with an air filter with too small separation area are presented, in the form of increased pressure drop and energy loss of the engine as well as shorter car mileage to reach permissible pressure drop.
EN
New designs of internal combustion engines require the use of engine oils that can cope with more demanding conditions, primarily with greater loads and higher temperatures. The requirements of recent years have led to a wider use of modern base oils and specially designed additive packages. This avoids the formation of impurities and changes in viscosity as a result of shearing of the viscosity additives under high loads. The article discusses the important problem of oil aging during operation and the impact of this phenomenon on the operation of internal combustion engines. The influence of oil service life and its replacement on the emission of toxic exhaust gas components was discussed, and the results of research on the effect of oil service life on changes in their viscosity were presented.
EN
Analysis of the possibility of using a rotary engine based electric generator to propell a powered sailplane. The paper presents analysis of utilising Wankel type enine as a power input for an electric generator in the motor glider propulsion system. This generator would be a part of the propulsion system of a hybrid motor glider using the AOS 71 motor glider airframe. In the research, the rotational characteristics of the LCR 407ti wankel engine were determined experimentally. Driving torque run, power and fuel consumption were determined as a function of engine speed. The obtained results are presented in diagrams. The conceptual diagram of the hybrid drive is presented. The electric generator was selected and its effectiveness, as well as the effectiveness of entire propulsion system was assessed from the motor glider's performance point of view. Basing on the research conducted, conclusions were drawn and there were indicated the objectives and directions of further research on hybrid propulsion with specific aerodynamic and mass limitations of the aircraft.
PL
Osady tworzone na powierzchniach różnych wewnętrznych elementów tłokowych silników spalinowych i układów z nimi współpracujących stanowią niepożądane zjawisko, narastające wraz z czasem eksploatacji silników i zagrażające ich poprawnemu działaniu. Powstawanie osadów w wyniku przebiegu procesów wtrysku paliwa, tworzenia mieszanki paliwowo-powietrznej i jej spalania w tłokowych silnikach spalinowych jest zjawiskiem normalnym. Dopiero na początku XXI wieku rozpoczęto szerokie, wielokierunkowe badania mające na celu ustalenie nie tylko przyczyn powstawania osadów, mechanizmów ich tworzenia i czynników sprzyjających procesom przyrostu osadów, ale także określenie składu chemicznego różnych grup osadów. Potrzeby takich badań wynikały z konieczności spełniania przez silniki sukcesywnie zaostrzanych przepisów w zakresie ochrony środowiska naturalnego człowieka, a to wiązało się z wprowadzaniem coraz bardziej złożonych konstrukcji silników oraz strategii sterowania procesami precyzyjnego, dzielonego na części wtrysku paliwa do komór spalania silników i zaawansowanych algorytmów sterujących procesami spalania w zależności od systemu spalania oraz przeznaczenia silnika. Okazało się jednak, że współdziałanie coraz bardziej złożonych technologii i rozwiązań silników, a zwłaszcza układów wtrysku paliwa, może być w sposób istotny zaburzane tworzonymi w nich osadami. Coraz bardziej skomplikowane konstrukcje silników oraz rosnąca dokładność wykonania współpracujących ze sobą elementów wymuszają konieczność wielokierunkowego badania szkodliwych osadów. Identyfikowanych jest coraz więcej czynników wpływających na tworzenie osadów, co prowadzi do opracowywania coraz bardziej złożonych klasyfikacji i podziałów osadów ze względu na ich rodzaj, skład i postać. Równocześnie poszukiwania sposobów dalszego obniżania emisji składników szkodliwych do atmosfery i poprawy sprawności silników wymuszają dalsze zmiany w konstrukcji zarówno silników, jak i samych pojazdów. Zwiększające się ciśnienie i temperatura procesów spalania silnikach w połączeniu ze zmianami ich tradycyjnego cyklu pracy wpływają na zmiany wymagań stawianych paliwom silnikowym. W konsekwencji powyższe zmiany mają wpływ zarówno na skład chemiczny, jak i morfologię tworzonych w silnikach osadów. Wielkość tworzonych osadów koksowych może zaburzać procesy rozpylania paliwa, napełniania komór spalania silnika, zawirowania ładunku w komorach spalania, a w konsekwencji wpływać na sprawność napełniania komór spalania oraz na jakość tworzenia mieszanki paliwowo-powietrznej. Doprowadziło to do opracowania wielu znormalizowanych metod oceny wielkości osadów. Ustalono przy tym, że w przypadku silników ZI osadami najbardziej zagrażającymi ich poprawnej pracy, w rozumieniu zachowania deklarowanych przez producentów osiągów w czasie oraz walorów użytkowo-eksploatacyjnych, są te, które tworzą się w komorach spalania, na zaworach dolotowych, w kanałach dolotowych i na końcówkach wtryskiwaczy paliwa. W przypadku silników ZS najbardziej niebezpieczne są osady koksowe (węglowe) tworzone na zewnętrznych powierzchniach końcówek rozpylaczy wtryskiwaczy oraz wewnątrz kanalików wtrysku paliwa rozpylaczy. W Europie obligatoryjne procedury oceny wielkości różnych osadów koksowych powstających na różnych elementach, zarówno w silnikach ZI, jak i ZS, opracowywane są w ramach grup roboczych CEC (Co-ordinating European Council for the Development of Performance Tests for Transportation Fuels, Lubricants and Other Fluids). W teoretycznej części pracy opisano problemy związane z osadami tworzonymi w tłokowych silnikach spalinowych oraz w ich układach paliwowych. Omówiono standardowe oraz niestandardowe silnikowe i analityczne metody zarówno ilościowej, jak i jakościowej oceny osadów. Przedstawiono znaczenie obecnie stosowanych metod ocen dla tworzenia klasyfikacji osadów. Wskazano zakres stosowania oraz przydatność metod do określenia zagrożeń, jakie stwarzają różnego typu osady dla funkcjonowania silnika, jak i ustalenia przyczyn ich powstawania, w tym w szczególności związanych ze składem stosowanych paliw i smarowych olejów silnikowych. Przedyskutowano wpływ składu paliw, jak również konstrukcji silników i warunków ich eksploatacji na tworzenie różnych osadów zarówno w samych silnikach, jak i w układach wtrysku paliwa. Wskazano możliwe przyczyny powstawania szkodliwych osadów. Podkreślono też ogromne znaczenie opracowywania i stosowania nowoczesnych dodatków do paliw kontrolujących i przeciwdziałających tworzeniu szkodliwych osadów silnikowych. W części doświadczalnej zaprezentowano wyniki badań prowadzonych w ramach projektów badawczych i prac statutowych w Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym. Niniejsze wyniki dotyczą: • nieporównywalności ocen właściwości detergentowych paliw w różnych, znormalizowanych testach silnikowych; • wielokierunkowych ocen wpływu różnych dodatków detergentowo-dyspergujących na tworzenie się szkodliwych osadów podczas testów silnikowych; • wpływu sposobu uszlachetniania paliw na procesy ilościowego i jakościowego tworzenia osadów w tłokowych silnikach spalinowych; • oceny wpływu wybranych związków chemicznych stanowiących zanieczyszczenia zawarte w paliwach na procesy powstawania osadów w silnikach i układach wtrysku paliwa; • oceny wpływu różnych struktur związków chemicznych stanowiących zanieczyszczenia zawarte w paliwach i biopaliwach na procesy powstawania osadów w silnikach i układach wtrysku paliwa; • wielokierunkowych badań wpływu biokomponentów zawartych zarówno w benzynach, jak i olejach napędowych na tendencje do tworzenia osadów silnikowych; • wielokierunkowych badań wpływu starzenia FAME zawartego jako biokomponent w oleju napędowym na tworzenie szkodliwych osadów w silnikach i układach wtrysku paliwa.
EN
The undesirable deposits forming on the surfaces of various internal parts of reciprocating internal combustion engines and the systems operating in conjunction with them worsen during the operation of the engines and threaten their proper functioning. The deposits form as a normal result of the processes of fuel injection and creating and combusting the fuel–air mixture in engines. It was not investigated until the beginning of the 21st century, when extensive multi-directional research began not only to identify the causes of these deposits, the mechanisms behind their formation, and the factors leading to deposit growth, but also to determine the chemical composition of various groups of deposits. Such research became necessary because engines must comply with gradually tightening regulations on environmental protection, necessitating the introduction of increasingly complex engine designs and strategies for controlling the processes of precise and divided fuel injection into the combustion chambers and advanced algorithms for controlling the combustion processes according to the combustion system and the purpose of the engine. However, it became apparent that the co-functioning of the increasingly complex engine technologies and solutions, particularly of fuel injection systems, may be significantly disturbed by the deposits forming inside them. More and more complicated engine designs with tighter and tighter tolerances of the working parts necessitate the multi-directional testing of harmful deposits. An increasing number of factors affecting deposit formation are being identified, which leads to the development of increasingly complex classifications and subdivisions of deposits according to their type, composition, and form. At the same time, the search for lower emissions and greater engine efficiency is driving further mechanical changes in engines and vehicles. The higher temperatures and pressures connected with these changes are likely to impact the fuel being handled within the fuel and combustion systems. Such effects will inevitably cause the deposit chemistry and morphology to change. The size of the coke deposits produced may disturb the processes of fuel atomization, of filling the engine combustion chambers and swirling the charge, and in consequence may affect the efficiency of filling and the quality of the fuel–air mixture. These problems led to the development of a number of standardized and unstandardized methods for assessing the size of deposits. It was found that in the case of SI engines, the deposits that most endanger correct engine operation are those which are formed in the combustion chambers, on the inlet valves, inlet ducts, and fuel injector tips. The most common sign of deterioration caused by deposits is the loss over time of the performance, usability, and operational value which were originally declared by the manufacturer. In the case of CI engines, the most dangerous are coke (carbon) deposits formed on the external surfaces of the fuel injector nozzle tips and inside the injector nozzle orifices. In Europe, mandatory procedures for assessing the size of different coke deposits formed on different components in both SI and CI engines are being developed by the Coordinating European Council for the Development of Performance Tests for Transportation Fuels, Lubricants, and Other Fluids (CEC). The theoretical part of this publication reports the problems of the deposits produced in reciprocating internal combustion engines and their fuel systems. It discusses standard and non-standard engine test methods for both quantitative and qualitative assessment of deposits and presents the significance of the assessment methods which are currently used for the classification of deposits. The publication also presents the scope of application and the usefulness of methods for determining the threats posed to the functioning of an engine by various types of deposits and methods for identifying the causes of deposit formation, in particular those related to the composition of the fuels and lubricating oils used. The effects which fuel composition and the engine’s construction and operating parameters have on various engine deposits, the possible causes of deposit formation, and the importance of modern deposit control additives and high-technology solutions in counteracting this detrimental phenomenon are also all discussed. The experimental part presents the results of research carried out at the Oil and Gas Institute – National Research Institute concerning: • the incomparability of measurements of fuel performance obtained from various engine tests, • studies on the influence of various deposit control additives on the formation of harmful engine deposits during engine tests, • the influence of fuel treatments on the deposit formation processes in internal combustion engines (described qualitatively or quantitatively), • determination of the impact which various chemical compounds, serving as contaminants within the fuels, have on deposit formation in internal combustion engines and fuel injection systems, • determination of the impact that various chemical structures of the compounds within the fuels and biofuel blends have on deposit formation in internal combustion engines and fuel injection systems, • studies on the influence of bio-components contained in both petrol and diesel fuels on tendency for deposits to form in internal combustion engines, and • multidirectional studies on the impact of FAME degradation processes in biodiesel fuel blends on the formation of harmful engine deposits.
10
Content available Modelling of the low-pressure gas injector operation
EN
In recent years, there has been a growing interest in alternative sources of power supply for internal combustion engines. Lique-fied petroleum gas injection systems are among the most popular. It becomes necessary to know mathematical descriptions of the opera-tion of individual components. The article presents a mathematical model that describes the operation of the low-pressure gas injector. Valtek plunger injector was chosen as the test object. The mathematical description includes three parts, i.e. electric, mechanical and pneumatic. The electrical part describes the generation of electromagnetic force by a circuit with a coil, in the mechanical equilibrium equa-tion of forces acting on the plunger, and in the pneumatic part the air pressure on the plunger. The calculations were performed in the Matlab/Simulink environment, creating current waveforms, acting forces and plunger displacement. Correctness of mathematical descrip-tion and determined in the course of opening and closing time calculations were related to the values declared by the manufacturer, show-ing differences below 3%. The presented mathematical model can be modified for other injector design solutions.
EN
The article presents research results referring to the influence of supply pressure on the functional parameters of the impulse low-pressure gas-phase injector. The study was done on the original stand for flow test of gas-phase injectors. In the indirect evaluation, with the initial parameters and the length of the forced impulse, the current line, acceleration and pressure sensor courses were used. Apart from the volumetric flow rate, the analysed parameters were the time periods of the injector opening and closing process. Those time segments were composed of response time and opening/closing time, the sum of which gives time of full opening. Functional relationships describing the volumetric flow rate, time of full opening and closing are presented, which are helpful not only in comparative tests of different injectors, but also in modelling the operation of gas injector or algorithms of gas supply control system. The reference to the volumetric flow rate allowed to indicate possible causes of variability of this parameter depending on the supply pressure.
EN
The constructions of today's of internal combustion engines used in PC category vehicles require the use of exhaust gas aftertreatment systems in order to meet the emission standards. The oxidation or reduction reaction processes of toxic compounds in the system is directly related to the temperature of the medium and determines the operating efficiency. The temperature value is of particular importance in the spark-ignition engine, in which the variations due to the quantitative regulation of the fuel-air mixture are greater. The temperatures obtained may be low especially in urban conditions, due to road congestion, in which the engine operates at idle generating exhaust gas at low temperature. The article presents exhaust system temperature tests of a modem SI engine depending on the operating point in a simulated real drive cycle through the Poznań agglomeration, previously recorded during tests in accordance with the RDE procedure. The temperature measurement was carried out upstream and downstream of the catalytic converter, as well as at the location corresponding to the end point of the vehicle exhaust system. The obtained results have been compared to maximum temperature of exhaust sample for PEMS analyzers.
PL
Konstrukcje dzisiejszych silników spalinowych stosowanych w samochodach kategorii PC wymagają zastosowania układów oczyszczania spalin w celu spełnienia norm ich emisji. Procesy reakcji utleniania lub redukcji toksycznych związków w układzie wylotowym są bezpośrednio związane z jego temperaturą i determinują możliwość ich realizacji. Wartość temperatury spalin ma szczególne znaczenie w silniku o zapłonie iskrowym, w którym zmiany wynikające z ilościowej regulacji mieszanki paliwowo-powietrznej są większe niż w silniku Diesla. Uzyskana temperatura układów oczyszczania spalin może być zbyt niska, szczególnie w warunkach miejskich, z powodu kongestii, w których silnik pracuje na biegu jałowym, bądź jest wyłączany przez system start-stop. W artykule przedstawiono badania temperatury układu wylotowego nowoczesnego silnika SI w zależności od punktu pracy w symulowanym rzeczywistym cyklu jazdy przez aglomerację poznańską, uprzednio zarejestrowanym podczas badań zgodnie z procedurą RDE. Pomiary temperatury przeprowadzono przed i za reaktorem katalitycznym, a także w miejscu odpowiadającym punktowi końcowemu układu wydechowego pojazdu. Uzyskane wyniki porównano z maksymalną temperaturą próbki spalin dla stosowanych analizatorów PEMS.
EN
Current trends in the high bypass ratio turbofan engines development are discussed in the beginning of the paper. Based on this, the state of the art in the contemporary turbofan engines is presented and their change in the last decade is briefly summarized. The main scope of the work is the bypass ratio growth analysis. It is discussed for classical turbofan engine scheme. The next step is presentation of reach this goal by application of an additional combustor located between high and low pressure turbines. The numerical model for fast analysis of bypass ratio grows for both engine kinds are presented. Based on it, the numerical simulation of bypass engine increasing is studied. The assumption to carry out this study is a common core engine. For classical turbofan engine bypass ratio grow is compensated by fan pressure ratio reduction. For inter turbine burner turbofan, bypass grown is compensated by additional energy input into the additional combustor. Presented results are plotted and discussed. The main conclusion is drawing that energy input in to the turbofan aero engine should grow when bypass ratio is growing otherwise the energy should be saved by other engine elements (here fan pressure ratio is decreasing). Presented solution of additional energy input in inter turbine burner allow to eliminate this problem. In studied aspect, this solution not allows to improve engine performance. Specific thrust of such engine grows with bypass ratio rise – this is positive, but specific fuel consumption rise too. Classical turbofan reaches lower specific thrust for higher bypass ratio but its specific fuel consumption is lower too. Specific fuel consumption decreasing is one of the goal set for future aero-engines improvements.
EN
The article presents the possibility of using self-learning control algorithms to manage subassemblies of an internal combustion engine in order to reduce exhaust emissions to the natural environment. In compression ignition (CI) engines, the issue of emissions mainly concerns two components: particulate matter (PM) and nitrogen oxides (NOx). The work focuses mainly on the possibility of reducing the emission of nitrogen oxides. It is assumed that the particularly problematic points when it comes to excessive emission of harmful substances are the dynamic states in which combustion engines operate constantly. In dynamically changing operating points, it is very difficult to choose the right setting of actuators such as the exhaust gas recirculation (EGR) valve to ensure the correct operation of the unit and the minimum emission of these substances. In the light of the above, an attempt was made to develop a selflearning mathematical model, which can predict estimated emission levels of selected substance basing on current measurement signals (e.g. air, pressure, crankshaft rotational speed, etc.). The article presents the results of the estimation of nitrogen oxides by the trained neural network in comparison to the values measured with the use of a sensor installed in the exhaust system. The presented levels of estimated and measured results are very similar to each other and shifted over time in favour of neural networks, where the information about the emission level appears much earlier. On the basis of the estimated level, it shall be possible to make an appropriate decision about specific settings of recirculation system components, such as the EGR valve. It is estimated that by using the chosen control method it is possible significantly to reduce the emission of harmful substances into the natural environment while maintaining dynamic properties of the engine.
EN
Regeneration of parts is the most correct form of use of worn out components and contributes, among others, to reduce CO2 emissions. In the case of elements of fuel injector systems, very high precision is required and such regeneration should be carried out using the original parts. It also requires testing on the original testing stands of these manufacturers, which very often characterized by the fact that it is not possible to perform a short test, which means that it is only possible to perform a time-consuming comprehensive test. An unquestionable advantage in some cases would be the possibility of preliminary verification of the correct operation of the regenerated subassembly without the need for a full time-consuming test. In the present situation, only after completing a time-consuming comprehensive test of the diagnosed element of the injection system, it is often necessary to carry out its disassembly, replacement or correction of one of the components and reassembly with the next time-consuming test. In the case of low unemployment in the labour market, this is extremely unfavourable, and it is often not possible to organize work in such a way that the diagnostic test of the subassembly takes place without the participation of an employee. On the basis of the analyses presented in this article, carried out in the research and development department in company whose employee is one of the co-authors, it can be stated that in the current situation on the labour market where skilled workers are required to work and for the development of science is the most purposeful recognition of the possibility of using vibroacoustic signals to shorten time of tests, which with a high probability may end in a negative result. The preliminary analysis carried out, show that limitation of diagnostic time can be over 35%.
EN
Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.
EN
The article presents the conditions for the use of ethyl alcohol as a component and a sole fuel for internal combustion engines. Methods of ethanol production, its properties and the benefits and risks associated with using it as engine fuel have been described. The variants of commercial ethanol fuels allowed by law have also been presented. Ecological aspects of the use of ethanol fuels for modern internal combustion engines were presented. The opinion was expressed that although ethanol is used in bulk as a component of gasolines, its use as a self-contained fuel is and probably will continue to be small in the near future.
PL
W artykule przedstawiono uwarunkowania stosowania alkoholu etylowego jako składnika oraz samodzielnego paliwa do silników spalinowych. Opisano metody produkcji etanolu, jego właściwości oraz korzyści i zagrożenia związane ze stosowaniem go jako paliwa silnikowego. Zaprezentowano dopuszczalne prawem warianty handlowych paliw etanolowych. Przedstawiono ekologiczne aspekty stosowania paliw etanolowych do współczesnych silników spalinowych. Wyrażono opinię, iż mimo, że etanol stosowany jest masowo jako komponent benzyn silnikowych, to jego zastosowanie jako samodzielnego paliwa jest i prawdopodobnie w najbliższej przyszłości będzie niewielkie.
EN
The article presents the compression-ignition engine test results of static operating states in driving tests: NEDC (New European Driving Cycle), RDE (Real Driving Emissions) and the Malta custom test cycle, developed at the Poznan University of Technology. The NEDC and Malta tests were carried out as drive cycle simulations on the engine test bench, the RDE test was carried out in the real driving conditions. The engine operating states are described by the physical quantities of speed and torque. For each of the tests, zero-dimensional characteristics of the values describing the engine operation states were determined, including: mean value and average standard deviation and coefficient of variation. Histograms of quantities describing the engine's operating states for considered tests and driving conditions were also determined. A large diversity of zero-dimensional characteristics of the quantities describing the engine's operating states for the considered driving tests and driving conditions was found.
EN
The article presents results of the studies on the charged, dual-fuel CI compression ignition engine fuelled with propane. The main goal of the studies was to fuel the engine so that the amount of energy provided with propane is possibly highest at the high efficiency, low emission of harmful exhaust constituents and proper combustion. As the studies conducted so far have shown, with the increase of energy from propane we observe crucial changes in the combustion process. As these changes may be a barrier in the further increase of energy, we decided to change the injection parameters of the diesel fuel. The changes introduced allowed for the 70% energetic contribution of gas fuel at the subsequent elimination of unfavourable phenomena. The fuel injection was realized divided into two doses. Both proportions and angle at the beginning of the injection for both doses were variable. The angle at the beginning of injection for the first dose was changed in a wide range and depended on the value of charging pressure. The angle at the beginning of injection for the second dose was changed in a much narrower range, mainly due to very clear changes in the nature of combustion process. The studies have been conducted for three values of charging pressure, namely 200; 400 and 600 [mbar], and also for the naturally aspirated version. Study results have been presented in a form of regulation characteristics for the angle of the beginning of injection of the pilot dose for the chosen charging variants, as well as volume and angle of the beginning of injection for the main dose. The obtained results show that the content of exhaust constituents for the dual-fuel CI engine depends highly on assumed regulations of injection parameters of the fuel dose initiating the ignition, as well as engine charging pressure.
EN
The article presents selected problems concerning tests of toxic exhaust emissions from engines of vehicles, mobile devices, engines used in gardening and construction works. For this group of engines, this type of testing is carried out primarily in laboratory conditions, however, variable load conditions during actual operation justify efforts to determine the level of emissions in real operating conditions. Research in real operating conditions for different engine categories becomes increasingly more standard, in this aspect, it is necessary to verify the state of knowledge and methodology in the aspect of testing engines of machines and mobile devices. The research performed by the authors was the first of this type using PEMS equipment, hence some conclusions and observations can be made from the obtained results. At present, the type approval procedures for the engine group in question do not account for emissions tests in real operating conditions, while also missing any description of a standardized research methodology. In addition, the engine group in question is not really suitable for testing in real conditions. An introduction to research aimed at developing an exhaust emission test methodology in real operating conditions of mobile device engines was included in the article.
first rewind previous Strona / 19 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.