Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  coal pyrolysis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Coal pyrolysis is a complex process involving a large number of chemical reactions. Pyrolysis is a key step in all coal conversion processes. The Distributed Activation Energy Model (DAEM) is a state-of-the art approach to the problem of predicting the amount of volatile released versus activation energy or time. The distribution of mass released is usually assumed to be Gaussian. We present an inverse iterative approach together with a smoothing function to estimate the underlying distribution directly from volatilisation data.
2
Content available remote Proces pirolizy węgla w technologii podziemnego zgazowania węgla (PZW)
PL
Podziemne zgazowanie węgla (PZW) jest kontrolowanym procesem konwersji surowca, jakim jest węgiel zalegający w pokładzie, na gaz syntezowy. Jednym z zagadnień efektywności energetycznej zgazowania jest optymalizacja zachodzących w jego trakcie procesów chemicznych, do których należy piroliza węgla. W artykule omówiono proces odgazowania calizny węgla i jego produkty. Scharakteryzowano również wpływ typu węgla i parametrów prowadzenia procesu zgazowania węgla na ilość i skład chemiczny gazu pirolitycznego. Rozpoznanie istoty procesu odgazowania w technologii PZW pozwoli w przyszłości na jego matematyczny opis, istotny z punktu widzenia zastosowań praktycznych w inżynierii chemicznej i procesowej.
EN
Underground Coal Gasification (UCG) is a controlled process which converts coal from the seam into syngas. Gasification efficiency depends on the optimization of chemical processes, including coal pyrolysis. This paper discusses the process of coal seam devolatilization and its products. It also presents the impact of coal type and process parameters on the amount and chemical composition of the pyrolysis gas. Identification of the coal devolatilization process in UCG technology will allow to produce a mathematical description in the future. This description may be a useful tool designed for practical applications in chemical and processing engineering.
3
Content available remote Statistical approach to assessing groundwater pollution from gasworks
EN
The primary objective of this work was to ascertain the effectiveness of the Microtox system in assessing the quality of groundwater polluted with by-products of coal pyrolysis. Another major objective was to investigate how biological treatment contributes to the change in water toxicity. Making use of the results of toxicological instrumental analyses, as well as of statistical methods, attempts were also made to specify which particular compound is the main contributing factor in the toxicity of water. When used for assessing the progress of the treatment process, the Microtox test proved very useful for application in the treatment of groundwater polluted by gasworks. The results obtained with this test have provided a reliable description of the course of the technological process, which can be efficiently corrected owing to a quick availability of the results of toxicological analysis. Another benefit offered by the Microtox test is that the use of statistical methods makes it possible to decide which of the compounds being components of the mixture is responsible for the toxicity of an environmental sample.
PL
Wytwarzanie wodoru na drodze zgazowania węgla, jak również jego pozyskiwanie z gazu koksowniczego i smoły, posiada w warunkach polskich potencjalnie duże znaczenie. Jednakże w aspekcie naszych zobowiązań w zakresie działań, zmierzających do ograniczenia niepożądanych skutków zmian klimatycznych, istotnym jest oszacowanie wpływu wspomnianych procesów, jak też rodzaju surowca węglowego na wielkość wytworzonego i wyemitowanego CO2 do atmosfery w całym cyklu jego wytwarzania, obejmującym wydobycie węgla, jego przeróbkę mechaniczną, transport do zakładu zgazowania lub koksowni, technologię zgazowania/odgazowania węgla oraz oczyszczanie i konwersję surowego gazu. Obiektem prezentowanych w artykule analiz są trzy wybrane procesy wytwarzania wodoru z węgla, tj.: zgazowanie węgla brunatnego w oparciu o sprawdzoną w skali przemysłowej technologię firmy Shell, zgazowanie węgla kamiennego w oparciu o tę samą technologię oraz pozyskiwanie wodoru z oczyszczonego gazu koksowniczego i smoły. Dla tych trzech procesów wyznaczono wskaźniki uzysku wodoru, całkowitą ilość wytworzonego i ewentualnie wyemitowanego CO2 do atmosfery oraz ilości CO2 wymagające sekwestracji. Z uwagi na uzysk wodoru najkorzystniejszym okazał się proces zgazowania węgla kamiennego (95,9 kg H2 z 1 Mg węgla w stanie roboczym). Natomiast proces pozyskania wodoru z gazu koksowniczego jest zdecydowanie najkorzystniejszy (14,8 kg/kg H2) biorąc pod uwagę podstawowy wskaźnik, charakteryzujący proces pod względem całkowitej intensywności wytwarzania CO2. Z punktu widzenia emisji ditlenku węgla po zastosowaniu sekwestracji najkorzystniejsze okazało się zgazowanie węgla brunatnego, przy czym wielkości emisji uzyskane dla obu węgli są na podobnym poziomie (ok. 3,58 i 3,44 kg CO2 na 1 kg wyprodukowanego wodoru odpowiednio dla węgla kamiennego i brunatnego).
EN
Either production of hydrogen by coal gasification or from coke oven gas and coal tar is, potentially, very important in Polish conditions. However, in respect of our commitment to reduce the undesired effects of climate changes, it is important to establish the impact of the above-mentioned processes as well as coal quality on the amount of CO2 produced and emitted to the atmosphere in the entire hydrogen production cycle involving coal mining, mechanical processing, transport to gasification plant or coke plant, coal gasification/pyrolysis technology, as well as raw gas cleaning and conversion. Three selected processes of hydrogen production from coal were analyzed, i.e. brown coal gasification by means of the industrially tested technology of Shell, hard coal gasification by means of the same technology as well as hydrogen obtained from coke oven gas and coal tar. For these three processes, hydrogen yield, accompanied CO2 intensity rate and potential emission to the atmosphere and the amount of CO2 requiring sequestration were determined. On account of the hydrogen yield, hard coal gasification proved to be most beneficial (84,6 kg of H2 from 1 Mg of raw coal). However hydrogen production from coke oven gas proved to be most beneficial in terms of total CO2 intensity amounting to 14,8 kg/kg H2. Brown and hard coal gasification were found to be advantageous from the point of potential CO2 emission (respectively 3,58 and 3,44 kg of CO2 per 1 kg of hydrogen produced) upon application of sequestration.
PL
Celem zastosowania reaktora z cyrkulacyjnym złożem fluidalnym do pirolizy węgla jest m.in. uzyskanie karbonizatu do produkcji bezdymnego, formowanego paliwa stałego. Piroliza węgla przebiega w wysokiej temperaturze 700-900°C przy częściowym zgazowaniu węgla. Proces badano w reaktorze o zdolności przerobowej 300 kg węgla/h. Określono wpływ stosunku powietrze/węgiel na wydajność i jakość produktów. W szczególności badano i omówiono wpływ dodatku dolomitu na dystrybucję siarki i chloru w produktach pirolizy.
EN
The objective of application of the reactor with circulating fluidal bed for coal pyrolysis consists , among others, obtaining of carbonisates for production of smokeless , formed solid fuel. Coal pyrolysis is carried out at high temperature 700 - 900°C with partial gasification of coal. The process Was investigated in the reactor of potential throughput potential 300 kg coal/h. In particular the influence of dolomite additive on sulphur and chlorine distribution in the pyrolysis product was investigated and discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.