Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  coal cleaning
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Podczas wydobycia i przeróbki mechanicznej węgla kamiennego oraz w procesach jego spalania powstają różne odpady. Zaliczyć do nich można m.in. odpady z procesu wzbogacania węgla oraz uboczne produkty spalania (popioły lotne i żużle). Aktualne przepisy prawne i branżowe zalecają określanie w nich m.in. zawartości rtęci oraz definiują graniczne jej wartości. Celem pracy było określenie poziomu rtęci w odpadach z procesu wzbogacania węgli kamiennych oraz stałych ubocznych produktach spalania węgli w energetyce w aspekcie ich wykorzystania i/lub utylizacji. Określono zawartość rtęci w reprezentatywnych próbkach odpadów z procesu wzbogacania na mokro i suchej separacji węgla kamiennego oraz w ubocznych produktach spalania z ośmiu kotłów opalanych węglem kamiennym: próbkach żużla i popiołu lotnego. Zawartość rtęci w badanych odpadach ze wzbogacania na mokro węgli kamiennych zmieniała się w granicach od 54 do 245 μg/kg (średnia 98 μg/kg), a z procesu suchej separacji od 76 do 310 μg/kg (średnia 148 μg/kg), w przeliczeniu na stan roboczy. Zawartość rtęci w popiołach lotnych wynosiła od 70 do 1420 μg/kg (średnia 567 μg/kg), a w żużlach od 8 do 58 μg/kg (średnia 21 μg/kg). Obecnie – w świetle obowiązujących przepisów prawnych z punktu widzenia zawartości rtęci w odpadach – nie ma istotnych barier w ich wykorzystaniu. Niemniej jednak mogą pojawić się w przyszłości przepisy limitujące maksymalną zawartość rtęci oraz dopuszczalną ilość wymywanej rtęci. Może to utrudnić ich wykorzystanie i/lub utylizację według dotychczasowych sposobów. Zasadne jest więc przygotowanie się na taką sytuację, poprzez opracowanie innych alternatywnych sposobów wykorzystania tych odpadów.
EN
In the processes of coal mining, preparation and combustion, the rejects and by-products are generated. These are, among others, the rejects from the coal washing and dry deshaling processes as well as the coal combustion by-products (fly ash and slag). Current legal and industry regulations recommend determining the content of mercury in them. The regulations also define the acceptable content of mercury. The aim of the paper was to determine the mercury content in the rejects derived from the coal cleaning processes as well as in the combustion by-products in respect of their utilization. The mercury content in the representative samples of the rejects derived from the coal washing and dry deshaling processes as well as in the coal combustion by products derived from 8 coal-fired boilers was determined. The mercury content in the rejects from the coal washing process varied from 54 to 245 μg/kg, (the average of 98 μg/kg) and in the rejects from the dry deshaling process it varied from 76 to 310 μg/kg (the average of 148 μg/kg). The mercury content in the fly ash varied from 70 to 1420 μg/kg, (the average of 567 μg/kg) and in the slag it varied from 8 to 58 μg/kg (the average of 21 μg/kg). At the moment, in light of the regulations from the point of view of mercury content in the rejects from the coal preparation processes and in the coal combustion by-products, there are no significant barriers determining the way of their utilization. Nevertheless, in the future, regulations limiting the maximum content of mercury as well as the acceptable amount of leachable mercury may be introduced. Therefore, preparing for this situation by developing other alternative methods of using the rejects and by-products is recommended.
PL
W powadzonych aktualnie pracach mających na celu obniżenie antropogenicznej emisji rtęci duży nacisk kładzie się na obniżenie emisji rtęci z procesów energochemicznego przetwórstwa węgla, głównie z procesów spalania. Jednym ze sposobów pozwalających na obniżenie antropogenicznej emisji rtęci jest jej usuwanie z węgla przed jego konwersją. Należy zaznaczyć, że rtęć w węglu kamiennym może być obecna zarówno w substancji organicznej jak i mineralnej, stąd też uniwersalna metoda powinna pozwalać na usuwanie rtęci z obu tych składowych substancji węglowej. W pracy przedstawiono koncepcję hybrydowego procesu usuwania rtęci z węgla kamiennego. Idea procesu polega na połączeniu procesów wzbogacania metodami mokrymi bądź suchymi (etap pierwszy) oraz wstępnej termicznej preparacji w temperaturze 200–400°C (etap drugi). W etapie pierwszym w procesie wzbogacania/ /odkamieniania z węgla usuwana jest część rtęci występującej w substancji mineralnej. Natomiast w etapie drugim z węgla usuwana jest rtęć występująca w substancji organicznej oraz rtęć w obecnych jeszcze w węglu składnikach mineralnych o relatywnie niskiej temperaturze uwalniania rtęci. Na podstawie wyników wstępnych badań, skuteczność obniżenia zawartości rtęci w węglu w takim procesie hybrydowym została oszacowana w przedziale od 36 do 75% (ze średnią wartością 58%). Efekt obniżenia zawartości rtęci w węglu jest jeszcze bardziej zauważalny w przypadku odniesienia jej zawartości do wartości opałowej węgla. Tak określona skuteczność obniżenia zawartości rtęci w węglu mieściła się w przedziale od 53 do 92% (przy średniej wartości wynoszącej 71%).
EN
Nowadays, actions allowing for a reduction of anthropogenic mercury emission are taken worldwide. Great emphasis is placed on reducing mercury emission from the processes of energochemical coal conversion, mainly from the coal combustion processes. One of the methods which enable a reduction of anthropogenic mercury emission is the removal of mercury from coal before its conversion. It should be pointed out that mercury in hard coal may occur both in the organic and mineral matter. Therefore, a universal method should allow for the removal of mercury, combined in both ways, from coal. In the paper, a concept of the hybrid mercury removal process from hard coal was presented. The idea of the process is based on the combination of the coal cleaning process using wet or dry methods (first stage) and the thermal pretreatment process at a temperature in the range from 200 to 400°C (second stage). In the first stage, a part of mercury occurring in the mineral matter is removed. In the second stage, a part of mercury occurring in the organic matter as well as in some inorganic constituents characterized by a relatively low temperature of mercury release is removed. Based on the results of the preliminary research, the effectiveness of the decrease in mercury content in coal in the hybrid process was estimated in the range from 36 to 75% with the average at the level of 58%. The effect of the decrease in mercury content in coal is much more significant when mercury content is referred to a low heating value of coal. So determined, the effectiveness was estimated in the range from 36 to 75% with the average at the level of 58%.
EN
The article deals with the analysis of the split of mercury present in raw coals between commercial products and wastes in 21 Polish collieries producing hard steam coal (Upper Silesia Coal Basin). The coal cleaning constitutes the first step in the reduction of mercury emissions in coal utilisation (mainly combustion) processes by decreasing the charge of mercury in the commercial products in comparison to the raw coal. The ratio of this reduction depends, first of all, on the technological characteristics of raw coal, as well as on the range of the applied coal cleaning method. The charges of mercury in exploited raw coals are split in coal preparation processes (mainly coal cleaning processes) between commercial products and waste products. The mercury content in commercial products has been analysed together with the emissions from coal combustion processes. In the second case, tools for the reduction of emissions have already been employed. Characteristics of waste products, in particular the mercury content, have been under consideration to a less extent so far. Data presented in the article allows for better, broadened with the waste products, analyses, understanding and assessment of all environmental mercury originated risks, arising from coal production, including coal cleaning. Presented data generate also the need for discussion of such terms like: “mercury reduction in commercial coal products” and “mercury emissions reduction”, as the result of coal cleaning processes.
EN
Dry dense-medium fluidized bed separation provides a new alternative approach for coal beneficiation and cleaning. An indicator of segregation degree Sash was proposed to evaluate the stratified performance of coal samples by bed density. Fluidization stability of the bed was greatly enhanced by mixing a certain amount (21.53%) of fine magnetite powder (< 0.15 mm) into the fluidized media, which indicated a uniform density distribution as well as slight fluctuations in bed. It was found that the favorable density-segregation performance of 3–13 mm coarse coal occurred with a static bed height of 80 mm and a superficial gas velocity of 11.84 cm/s. The optimal segregation degree values of 0.67, 0.74 and 0.76 were obtained for 3–6, 6–10 and 10–13 mm coal samples, respectively. Low-ash clean coal with yields of 50.79, 56.83 and 61.24% were effectively acquired by the dry separation for various coal size fractions, respectively. Probable error values of 0.07, 0.055 and 0.05 g/cm3 were achieved, indicating good separation performance.
PL
Sucha separacja, prowadzona na powietrznych stołach koncentracyjnych, oddziela skałę płonną od ziarn węgla przy gęstości rozdziału powyżej 2,0 g/cm3. Proces odbywa się w strefie ziarn kamiennych. Różni się więc od klasycznego wzbogacania węgla. Podatność urobku na wzbogacanie określa się terminem trudności wzbogacania. Opracowano szereg wskaźników oceniających tę trudność/łatwość wzbogacania. W artykule przypomniano kilka z nich. Stwierdzono, że nie są one przydatne do oceny podatności na rozdział prowadzony przy wysokich gęstościach rozdziału. Zaproponowano pewną modyfikację wskaźnika Birda. Na podstawie tej modyfikacji przeprowadzono badania podatności dla trzech klas ziarnowych węgla kamiennego. Analizowane przypadki pokazały, że urobek węglowy kierowany do suchej separacji jest łatwo wzbogacalny.
EN
Dry coal cleaning processes for the removal of refuse from all kinds of raw coal are operated by air tables for separation density up to 2.0 g/cm3. Compared to the classic method of coal cleaning, dry separation concerns mainly the removal of refuse (deshaling). The primary condition for applying this technology is the determination of coal’s washability. This study reviewed multiple washability factors. It was found that, for high separation density, these factors are not fully suitable. The Bird value was then modified, and based on this new method, examinations were made of the washabilities of three grain classes. The results showed suitability for the dry coal process.
6
Content available Fuzzy model of autogenous suspension coal cleaning
EN
The paper presents one of the possible approaches to fuzzy logic modeling of coal cleaning in autogenous suspension. In the scope of reviewing the problem in general, the process algorithm and the structural model of coal cleaning were set up. The paper deals with the flow of fuzzy logic model creation following the example of coal cleaning plant of the “Bogutovo selo” open pit mine of the Mine and Thermal Power Plant Ugljevik. The model is set up on the MATLAB software platform. Fuzzy model testing results, presented at the end of paper confirms applicability and reliability of the model. The discrepancies between the model and the real process parameters are within the limits of allowed industrial error.
PL
W pracy przedstawiono jedną z dostępnych metod modelowania rozmytego zastosowaną do modelowania procesu wzbogacania węgla w zawiesinie autogenicznej. Analiza problemu obejmuje przedstawienie algorytmu procesu wzbogacania oraz jego model strukturalny. W pracy przedstawiono proces tworzenia modelu rozmytego na przykładzie zakładu wzbogacania ‘Bogutovo selo’ przy kopalni odkrywkowej będącej częścią zakładów górniczych i elektrowni Ugljevik. Model stworzono przy wykorzystaniu platformy MATLAB. Wyniki testowania modelu rozmytego zaprezentowane w artykule potwierdzają przydatność i wiarygodność modelu. Rozbieżności pomiędzy wynikami modelowania a parametrami rzeczywistych procesów mieszczą się w dopuszczalnych przy procesach przemysłowych granicach tolerancji błędu.
EN
Mercury as well as most of its compounds is highly toxic and their presence in the natural environment is considered pollution. The mercury emissions to the atmosphere on a global scale amount to around from 5000 metric tonnes a year to 7000 metric tonnes a year. These estimates are subject to considerable uncertainty. Three main sources of mercury emission to the atmosphere are distinguished: anthropogenic emissions, natural emissions (volcanic activity, erosion) and reemission. The dominating anthropogenic mercury emission source is the combustion of fossil fuels mainly coals. The estimates show that the utilization of coal consists from around 65 - 75% of the anthropogenic mercury emissions to the atmosphere on global scale. The available data and prognostics show however, that the mercury emissions in highly developed countries, also those resulting from coal utilisation are decreasing. The chemism of mercury occurrence in coal is complex. Generally it is considered that mercury in coal occurs in two basic forms: bound with pyrites and other sulphates and in binding with organic matter of coal. Defining the form and tendency of mercury distribution in coal is very important from technological and environmental point of view. In literature one can find opinions that mercury in coal occurs only in the heavy fractions and that around 47% of mercury is bound in the form of inorganic compounds. The estimates also are that the degree to which mercury can be removed in cleaning processes is rather small and reaches up to 30% of the mercury quantity in raw coal. The reduction potential of mercury content in coal in Poland via the cleaning processes is not well known and not fully utilized due to the fact that Polish electricity and heat generation sector burns large amounts of uncleaned coal. GUS data show that the estimated, total level of anthropogenic emission of mercury to the atmosphere in Poland has decreased between 1990 and 2000 by around 40% and since 2002 the emission of this pollutant stays at the level of 20 metric tones a year. Coal combustion in the electricity and heat generation sector and its utilisation in other industries are responsible for over 90% of mercury emissions in Poland. There are 5 basic "technical" methods of reducing the anthropogenic mercury emissions into air during coal combustion processes. These are: the pre-combustion cleaning of coal, improving the boiler's efficiency, decreasing emissions through applying the best available technologies of NOx, SO2 and dust accompanied by mercury removal from flue gases as the so-called "accompanying effect". Other such methods are applying special techniques of mercury removal from flue gasses, as well as fuel switching to fuels with smaller mercury content. The "accompanying effect" plays a significant role in decreasing the mercury emissions to air during coal combustion. The mercury emission can be thus decreased even by over 80% in the result of applying standard, modern techniques of limiting other pollutants from power plants. In the article the mercury content in several Polish hard coals from the point of view of coal preparation technologies has been analysed. The determinations of mercury content have been "imposed" on basic technological analyses of raw coal. The target of the research was the analysis of the theoretical potential of mercury reduction in coal in its utilisation processes as the result of decreasing the mercury content in Polish hard coal applying preparation techniques. The analysed coals came from 5 hard coal mines. In three of the cases this was the raw coal in its full grain size range, the samples of which were of 6-8 metric tonnes mass. The raw coal has been subjected to size analysis and narrow size fractions have been allocated. The allocated size fractions have been subjected to fl oat and sink analysis. In the allocated size fractions and density fractions the mercury content has been determined. The authors additionally use the term "mercury quantity". The mercury quantity has been defined as the result of multiplication of the content of the given size (density) fractions and the mercury content in these fractions. The sum of such results for full size analyses (the full range of grain density) divided by 100 gives the weighted average of mercury content in raw coal (smalls) or size fractions subject to fl oat and sink analysis. This data shows that average mercury content in raw hard coals which have been analysed fits the range between 130-240 ppb. Together with the decrease in the size fraction in several of the analysed coals the mercury content shows a growing tendency. Generally, a considerable variation in the mercury content in the defined size fractions can be observed and there lack unequivocal, equal for all analysed coals, mercury content distribution tendencies in raw coal in function of size distribution. Size fractions as well as mercury quantity distribution within those classes have been presented. The distribution of mercury quantity is different for each analysed raw coal. Table 3 contains the results of fl oat and sink analyses and mercury content determinations in separated density fractions, together with the results of the calculations of cumulative mercury content in cumulated fractions, starting with the fraction with the smallest density. This allows evaluating the quality of potential products of cleaning after taking the given density as the separation density in the cleaning process. In the case of most of the conducted fl oat and sink analyses a similar distribution of mercury content in the function of grain density can be observed. The smallest mercury content characterises the light fractions, the maximum mercury content occurs in the fractions with intermediate density. In case of the +20 mm size fractions 40-70% of mercury quantity can be removed depending on the colliery. The mercury content in concentrates will theoretically reach from 90 ppb to around 150 ppb. At present the potential of removing mercury from raw coal in these size fractions is already fully used because in all hard coal mines the total amount of raw coal with the grain size above 20 mm is cleaned. The quantity of the removable mercury in the case of raw smalls is as a rule smaller but still significant and fluctuates in the range between 25-45%. In case of the finest coal of size fractions between 0.5 - 0.045 mm in the cleaning processes large amounts of mercury quantity contained in them can be removed - from around 30% to over 70% of mercury quantity. The mercury content in the finest coal concentrates will theoretically equal from 70 ppb to around 370 ppb. In the reality of Polish hard coal mines, in the case of smalls and the finest coal, the potential of mercury removal in the cleaning processes is not fully exploited due to the fact that a large part of the fine coal assortment (smalls) is used "raw". Broadening the cleaning of raw coal on the total amount of steam smalls, apart from improving the basic quality parameters of traded coals, will also additionally decrease the mercury content in them. Unfortunately, this potential must be recognised separately for each raw coal coming from the given colliery. The data presented in this article shows that formulating profound generalisations and models of mercury distribution in raw coals in Poland would be subject to too large mistakes.
PL
Rtęć oraz większość jej związków są silnie toksyczne, a jej obecność w środowisku naturalnym jest uważana za zanieczyszczenie. Emisje rtęci do atmosfery, w skali świata, ocenia się na od około 5000 t/rok do około 7000 t/rok. Oceny te są obarczone dużą niepewnością. Wyróżnia się trzy główne grupy źródeł emisji rtęci do atmosfery: emisja antropogeniczna, emisja naturalna (aktywność wulkaniczna, wietrzenie skał), i reemisja. Dominującym antropogenicznym źródłem emisji rtęci do atmosfery jest spalanie paliw kopalnych. Szacuje się, że wykorzystanie węgla odpowiada za około 65%-75% antropogenicznej emisji rtęci do atmosfery w skali świata. Dostępne dane i istniejące prognozy świadczą jednak, że emisje rtęci w krajach wysoko rozwiniętych, również te spowodowane użytkowaniem węgla zmniejszają się. Chemizm występowania rtęci w węglu jest skomplikowany. Generalnie uważa się, że rtęć w węglu występuje w dwóch podstawowych formach: związanej z pirytami i innymi siarczkami oraz w powiązaniu z materią organiczną węgla. Określenie form i sposobu rozkładu rtęci w węglu jest bardzo istotne z punktu widzenia technologicznego i środowiskowego. W literaturze można spotkać stwierdzenia, że rtęć występuje w węglu głównie we frakcjach ciężkich oraz, że około 47 % rtęci związane jest w postaci związków nieorganicznych. Szacuje się, że stopień usuwania rtęci w procesach wzbogacania jest raczej mały i sięga do 30% ilości rtęci zawartej w węglu surowym. Potencjał redukcji zawartości rtęci w węglu w Polsce na drodze wzbogacania węgla jest mało poznany i niewykorzystany z uwagi na spalanie w polskiej elektroenergetyce dużych ilości węgla niewzbogaconego. Z danych GUS wynika, że szacowany, całkowity poziom antropogenicznej emisji rtęci do atmosfery w Polsce zmniejszył się między rokiem 1990 a rokiem 2000 o około 40% i od 2002 roku emisja tego zanieczyszczenia utrzymuje się na poziomie około 20 Mg rocznie. Spalanie węgla w energetyce i wykorzystanie go w innych przemysłach jest odpowiedzialne za ponad 90% emisji rtęci w Polsce. Istnieje pięć podstawowych "technicznych" sposobów zmniejszania antropogenicznej emisji rtęci do atmosfery podczas procesów spalania węgla. Są to wstępne oczyszczanie węgla, poprawa sprawności bloków energetycznych, zmniejszanie emisji podczas stosowania najlepszych dostępnych technik kontroli emisji NOx, SO2, i pyłów, czemu towarzyszy usuwanie rtęci ze spalin, jako tzw. "efekt towarzyszący". Innymi sposobami jest stosowanie specjalnych technik usuwania rtęci ze spalin, oraz zmiana paliwa na paliwo o mniejszej zawartości rtęci. "Efekt towarzyszący" odgrywa znaczącą rolę w zmniejszaniu emisji rtęci do atmosfery podczas spalania węgla. Ocenia się, że emisja rtęci może być zmniejszona, nawet o ponad 80% w wyniku stosowania standardowych, nowoczesnych technik ograniczania emisji innych zanieczyszczeń z elektrowni. W artykule szczegółowo analizowano zawartości rtęci w kilku polskich węglach kamiennych z punktu widzenia technologii przeróbki węgla. Oznaczenia zawartości rtęci "nałożono" na podstawowe badania technologiczne węgla surowego. Celem badań była analiza teoretycznego potencjału redukcji emisji rtęci w procesach jego wykorzystania, jako wynik zmniejszania zawartości rtęci w polskim węglu kamiennym na drodze przeróbki węgla. Badane węgle pochodziły z 5 kopalń węgla kamiennego. W trzech wypadkach był to urobek surowy w pełnym zakresie jego uziarnienia, którego próbki miały masę 6-8 Mg. Węgiel surowy został poddany analizie ziarnowej z wydzieleniem wąskich klas ziarnowych. Wydzielone klasy ziarnowe urobku surowego poddano analizom gęstościowym. W wydzielonych klasach ziarnowych i frakcjach gęstościowych oznaczono między innymi zawartość rtęci. Autorzy posługują się pojęciem "ilość rtęci", zdefiniowanym, jako iloczyn zawartości danej klasy ziarnowej (frakcji gęstościowej) i zawartości rtęci w tej klasie (frakcji). Suma takich iloczynów dla pełnego uziarnienia podzielona przez 100 daje wartość średnią ważoną zawartości rtęci w urobku (miale) surowym lub klasie ziarnowej. Z uzyskanych danych wynika, że średnia zawartość rtęci w surowych węglach kamiennych, które poddano badaniom, mieści się w przedziale 130-240 ppb. Wraz ze zmniejszaniem się wielkości ziarn w kilku badanych węglach zawartość rtęci wykazuje tendencję wzrostową. Generalnie obserwujemy znaczną zmienność zawartości rtęci w wydzielonych klasach ziarnowych i brak jednoznacznych, jednakowych dla wszystkich badanych węgli, tendencji rozkładu zawartości rtęci w węglu surowym w funkcji uziarnienia. Ilości rtęci rozkłada się inaczej w każdym badanym węglu surowym. W tabeli 3 i na rysunkach 10-14 zamieszczono wyniki analiz gęstościowych i oznaczeń zawartości rtęci w wydzielonych frakcjach gęstościowych. W tabeli 3 zamieszczono również wyniki obliczeń skumulowanej zawartość rtęci w kumulowanych frakcjach, zaczynając od frakcji o najmniejszej gęstości. Pozwala to ocenić jakość potencjalnych produktów wzbogacania po przyjęciu danej gęstości jako gęstości rozdziału w procesie wzbogacania. W wypadku większości wykonanych analiz gęstościowych obserwuje się podobny rozkład zawartości rtęci w funkcji gęstości ziarn. Najmniejsze zawartości rtęci przypadają na frakcje lekkie, maksimum zawartości rtęci przypada na frakcje o pośredniej gęstości, a we frakcjach ciężkich zaznacza się spadek zawartości rtęci w porównaniu z frakcjami o pośredniej gęstości. W przypadku klas ziarnowych +20 mm można usunąć 40-75% ilości rtęci w zależności od kopalni. Zawartość rtęci w koncentratach będzie wynosiła teoretycznie od 90 ppb do około 150 ppb. Potencjał usunięcia rtęci z urobku surowego w tych klasach ziarnowych jest już obecnie w pełni wykorzystany, gdyż we wszystkich kopalniach całość urobku o wielkości ziarn powyżej 20 mm poddaje się wzbogacaniu. Ilość możliwej do usunięcia rtęci z miałów o uziarnieniu 20(30) - 0,5 mm jest z reguły mniejsza i waha się w przedziale 25-45%. W wypadku mułów o uziarnieniu 0,5 - 0,045 mm w procesach wzbogacania można usunąć od około 30-70% ilości rtęci. Zawartość rtęci w koncentratach mułowych będzie wynosiła teoretycznie od 70-370 ppb. W warunkach polskich, potencjał usunięcia rtęci w procesach wzbogacania miałów i mułów nie jest w pełni wykorzystany, gdyż duża część sortymentów miałowych jest użytkowana "na surowo". Rozszerzenie wzbogacania urobku surowego na całość miałów, oprócz poprawy podstawowych parametrów jakościowych węgli handlowych, prowadzić będzie do zmniejszenia zawartości w nich rtęci. Potencjał ten musi być rozpoznawany odrębnie w stosunku do węgli, pochodzących z różnych kopalń. Prezentowane w artykule dane świadczą, że formułowanie daleko idących uogólnień i modeli rozkładu rtęci w węglach surowym byłoby obarczone zbyt dużymi błędami.
8
Content available remote Czyste technologie węglowe : nowe podejście do problemu
PL
W artykule omówiono pierwszy etap technologii czystego węgla - oczyszczanie węgla przed spalaniem. Opisano procesy klasycznego wzbogacania oraz procesy głębokiego wzbogacania. Zwrócono uwagę na problem produktów pośrednich i odpadowych wydzielanych w procesie przeróbki węgla surowego. Stwierdzono, że rozważając problemy jakości koncentratów węglowych należy równolegle rozpatrywać problemy parametrów jakościowych produktów odpadowych. Parametry te wpływają w znacznym stopniu na kierunki ich zagospodarowania.
EN
The first stage of the clean coal technology - coal cleaning before burning - is discussed. The processes of classic coal cleaning are described as well as deep coal cleaning processes. Attention is drawn to the problem of middlings and refuse products separated in the process of raw coal preparation. It has been stated, that taking into consideration the problems of clean coal-concentrate-quality, the problems of qualitative parameters of waste products should be simultaneously taken into consideration. This parameters considerably influence directions of their management.
PL
Dokładność wzbogacania miałów węgla kamiennego wpływa na zmianę wychodu koncentratu i jego parametrów jakościowych, W oparciu o wskaźnik dokładności - imperfekcję obliczono przewidywane rezultaty wzbogacania węgla z trzech kopalń. Przyjęto osiem wartości imperfekcji oraz osiem gęstości rozdziału węgla na koncentrat i odpady. Dla dwóch gęstości wyznaczono prognozowane wychody koncentratu oraz wartość opałową, zawartość popiołu i siarki. Na podstawie stosowanego w Kompanii Węglowej SA cennika odczytano ceny zbytu koncentratów oraz obliczono wartość produkcji. Wykazano, że przy wzbogacaniu jednej tony węgla surowego różnice w wartości produkcji wynoszą od kilkudziesięciu groszy do kilkunastu złotych. Różnice te mają wpływ na efekty ekonomiczne kopalń węgla kamiennego.
EN
Accuracy of hard coal smalls cleaning affects on the change of concentrate yield and its quality parameters. Using accuracy indicator (imperfection) prognoses of coal cleaning for three mines were calculated. Eight values of imperfection and eight values of coal separation density were used. For two values of separation density the prognosed: yields, lower heating values and ash and sulphur contents for concentrate were estimated. The concentrate sale prices and production values were calculated on the basis of price list used in Kompania Węglowa SA. It has been shown, that while cleaning one ton of raw coal, differences in production values vary from fraction of 1 PLN up to several PLN. These differences impact economic results of hard coal mines.
PL
Przedstawiono podstawowe charakterystyki statyczne układu technologicznego produkcji koncentratu węgla koksowego, w którym łączone są koncentraty z procesu wzbogacania węgla w cieczach ciężkich, osadzarkach i flotacji. Układ ma charakter obiektu ekstremalnego, w którym dla zadanej jakości wsadu koksowego można znaleźć optymalną kombinację wielkości sterujących maksymalizujących wartość produkcji.
EN
The principal static characteristic of the technological system for production of coking concentrate have been discussed. The final concentrate consists of three products from heavy media process, jigs and froth flotation. The object has an extreme character in which, for the desired product quality, one can achieve the maximum tonnage of the product for optimal combination of control parameters.
11
Content available remote Monitorowanie i sterowanie procesami wzbogacania węgla
PL
Przedstawiono aktualny stan automatyzacji procesów wzbogacania węgla na przykładzie kopalni "Sośnica". Komputerowy centralny system dyspozytorski obejmuje następujące lokalne układy monito-ringu, automatyki i raportowania: wzbogacanie węgla w cieczach ciężkich (trzy systemy Disa 3), flotacji (3 xIZ-12), produkcji mieszanki, dozowania flokulanta (odmulnik Dorr'a i prasy filtracyjne), monitoring pracy maszyn, poziomów cieczy w zbiornikach i przepływu węgla (wagi przenośnikowe), system raportowania o ilości i jakości produkcji MT-baza, telewizja przemysłowa.
EN
The aim of the paper is the present state of coal cleaning processes automation is presented using Sosnica Colliery as an example. The control computer dispatcher centre includes the following local arrangements of monitoring, automation and reporting: dense medium coal cleaning (3 lines of Disa 3), flotation (3xIZ-12), blending, flocculent dosing (radial thickner and filter press), monitoring of machine operation, liquid level in the tanks and flow of coal (conveyor weights), production quantity and quality reporting system MT-base, industrial television.
PL
W artykule omówiono wyniki badań przemysłowych z zakresu odwadniania koncentratu miałowego (węgiel niskouwęglony) w wirówce typu EBR-42 (Centrifugal & Mechanical Industries). Odwadniany koncentrat miałowy charakteryzował się dużą zawartością wilgoci higroskopijnej wynoszącą około 6-=-7,5 %, co rzutowało na zawartość wilgoci w odwodnionym węglu. Badano wpływ: obciążenia wirówki nadawą, liczby wirowania, rodzaju stosowanego kosza sitowego oraz dodatku czystej wody do nadawy wirówki na wyniki odwadniania, tzn.: zawartość wilgoci w produkcie odwodnionym oraz rozdział masowy nadawy w wirówce.
EN
Results of industrial research on clean smalls (low-rank coal) dewatering in the centrifuge type EBR-42 (Centrifugal & Mechanical Industries) are discussed. Treated clean smalls had a high inherent moisture content amounting to about 6 -=-7,5 %, what affected the moisture content of dewatered coal. Influence of: centrifuge feed load, centrifuging number, kind of screen basked and addition of clean water on the dewatering results it means dewatered product moisture content and mass distribution of feed in the centrifuge was tested.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.