Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  chemical durability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Glasses in the Na2O–B2O3–SiO2–Fe2O3 system with a constant SiO2 content 70 mol% were synthesized using conventional melting in platinum crucibles in SiC-furnace in air. After synthesis and annealing, glasses were heat treated at 550°C for 96–144 hrs to promote phase separation. A tentative region of phase separation for this temperature was outlined. X-ray powder diffractometry results showed three iron-containing phases (Fe3O4, FeSiO3 and β-Fe2O3) forming in the investigated glasses with magnetite being the main phase as it is observed in most of the glasses. Chemical durability studies showed that compositions of phase-separated glasses suitable for synthesis of porous glasses, both iron-free and iron-containing lie in between 4 and 8 mol% of Na2O. Bulk samples of porous glasses were obtained within the chosen region having the following parameters: specific surface area 40–185 m2/g, porosity 30%–45%, pore diameter 3–14 nm. The parameters of porous structure of iron-containing porous glasses are of the same order of magnitude as the porous glass used for the multiferroic nanocomposite synthesis.
EN
SrO-Sb2O3-P2O5 glass system was prepared by high temperature melting method. The effects of Sb2O3 and P2O5 content on the structure, thermal behavior and chemical durability of the glasses were studied by infrared spectrometer, thermal dilatometer, differential thermal analyzer and constant temperature water bath heating. It can be concluded that the characteristic temperatures of the glasses increased firstly and then decreased with the increasing of Sb2O3 content, whereas the tendency of the coefficient of thermal expansion (CTE) varied inversely. The crystallization ability of the glasses was significantly increased and the water resistance was reduced for Sb2O3 content of 35 mol % and 40 mol %. The glasses with 20 mol %, 25 mol % and 30 mol % Sb2O3 showed better performance in every respect than the others and the glasses containing 25 mol % Sb2O3, characterized by the best performance, can be chosen as host glasses for further research.
3
Content available remote In-Situ analysis of corrosion of glazed surfaces using confocal optical microscopy
EN
The topographic analysis was studied as a method to examine surface-level reactions of glazes in aqueous solutions. Glazed surfaces typically have some microroughness caused by crystalline phases embedded in the glassy matrix and also macroroughness (waviness) due to variations in the coating thickness or irregularities in the clay body. The surface topography is usually given in the form of average values of various three-dimensional parameters measured in relation to a certain surface waviness. The surface roughness of matt glazes is typically higher than 0.4 žm. Selective corrosion of one of the phases in the glaze surface is likely to affect the microroughness. The average surface roughness of two matt glazes was measured with the confocal optical microscope for four parallel samples of each surface before and after four days of immersion in one acidic and two alkaline detergent solutions as well as in distilled water. One sample of each surface was also studied in-situ, i.e. in the same location as a function of the immersion time. The changes in the surface composition due to corrosion were analyzed with SEM-EDX. If the roughness was caused mainly by crystalline inclusions partially embedded in the glassy phase, their selective corrosion could not always be deduced from the average roughness values only. However, the in-situ observation enabled the authors to identify changes in the surface profile also in such cases where corrosion did not markedly affect the average surface roughness values. In-situ analysis with confocal optical microscopy was found to give a quick and efficient estimation of micro-level reactions of glazed surfaces in aqueous solutions.
PL
Dyskusji poddano analizę topograficzną jako metodę badania reakcji na poziomie powierzchniowym w szkliwach kontaktujących się z roztworami wodnymi. Powierzchnie szkliwione typowo mają pewną mikrochropowatość spowodowaną przez fazy krystaliczne osadzone w szklistej matrycy, a także makrochropowatość (falistość) z powodu zmienności grubości powłoki lub nieregularności powierzchni tworzywa ilastego. Topografia powierzchni jest zwykle podawana w postaci średnich wartości różnych trójwymiarowych parametrów mierzonych w relacji do pewnej falistości powierzchni. Chropowatość powierzchni szkliw matowych jest zazwyczaj większa niż 0.4 žm. Korozja selektywna jednej z faz szkliwionej powierzchni prawdopodobnie wpływa na mikrochropowatość. Zmierzono średnią chropowatość powierzchni dwóch szkliw matowych za pomocą optycznego mikroskopu współogniskowego dla czterech analogicznych próbek na każdej powierzchni przed i po czterodniowym zanurzeniu w jednym kwaśnym i dwóch zasadowych środowiskach detergentowych oraz w wodzie destylowanej. Jedna próbka każdej powierzchni była również badana in-situ, tzn. w tej samej lokalizacji w funkcji czasu trwania zanurzenia. Za pomocą SEM-EDX zanalizowano zmiany składu powierzchni spowodowane korozją. Jeśli chropowatość została wywołana głównie przez wtrącenia krystaliczne osadzone w fazie szklistej, ich selektywna korozja nie zawsze mogła być w prosty sposób odjęta od średniej wartości chropowatości. Jednakże obserwacje in-situ umożliwiły identyfikację zmian profilu powierzchni również w takich przypadkach, w których korozja nie wywierała znaczącego wpływu na wartości średniej chropowatości powierzchni. Stwierdzono, że analiza przeprowadzona in-situ za pomocą optycznego mikroskopu współogniskowego daje szybką i wydajną ocenę reakcji w roztworach wodnych na powierzchni szkliwionej na poziomie mikro.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.