Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  bonding strength
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To improve the mechanical performance of BiTe-based thermoelectric modules, this study applies anti-diffusion layers that inhibit the generation of metal intercompounds and an electroless nickel/electrode palladium/mission gold (ENEPIG) plating layers to ensure a stable bonding interface. If a plated layer is formed only on BiTe-based thermoelectric, the diffusion of Cu in electrode substrates produces an intermetallic compound. Therefore, the ENEPIG process was applied on the Cu electrode substrate. The bonding strength highly increased from approximately 10.4 to 16.4 MPa when ENEPIG plating was conducted to the BiTe-based thermoelectric element. When ENEPIG plating was performed to both the BiTe-based thermoelectric element and the Cu electrode substrate, the bonding strength showed the highest value of approximately 17.6 MPa, suggesting that the ENEPIG process is ef-fective in ensuring a highly reliable bonding interface of the BiTe-based thermoelectric module.
EN
In this study, the effect of electroless Pd-P plating on the bonding strength of the Bi-Te thermoelectric elements was investigated. The bonding strength was approximately doubled by electroless Pd-P plating. Brittle Sn-Te intermetallic compounds were formed on the bonding interface of the thermoelectric elements without electroless Pd-P plating, and the fracture of the bond originated from these intermetallic compounds. A Pd-Sn solder reaction layer with a thickness of approximately 20 μm was formed under the Pd-P plating layer in the case of the electroless Pd-P plating, and prevented the diffusion of Bi and Te. In addition, the fracture did not occur on the bonding interface but in the thermoelectric elements for the electroless Pd-P plating because the bonding strength of the Pd-Sn reaction layer was higher than the shear strength of the thermoelectric elements.
EN
In the present paper, the bonding strength of Fe-based self-fluxing alloy coating deposited by plasma spraying, gluing and laser remelting and alloying on the steel substrate have been investigated. When flame melting, a globular structure is formed. Against the background of the solid solution carbide-boride phases are clearly distinguishable, between which the Fe–Fe2B and Fe–FeB eutectic colonies are situated. Laser remelting leads to the formation of metastable structures, reinforced with dendrites, consisting of alloyed Fe-α and Fe-γ. At the low laser beam speeds the coating is melted completely with the formation of a cast structure with the dendrites. When the laser beam speed is increased, the dendritic structure gets fragmented. Structures of coatings alloyed with B4C and remelted by the laser beam vary with the increase of the spot speed. The bonding strength of coating without subsequent remelting decreases by 4–5 times in comparison with remelted. The bonding strength of the reinforced glue coating has adhesive and adhesive-cohesive character. When the load increases in the coating, microcracks develop, which gradually spread to the center of the bonding surface. For plasma coatings after laser remelting without additional alloying, the maximum bonding strength is observed with the minimum laser beam speed. With increasing the laser beam speed it decreases almost 1.5 times. In glue coatings reinforced with B4C particulates by laser remelting, the bonding strength is lower by 1.2–1.4 times in comparison with plasma coating.
EN
Welding is tremendously used in metal joining processes in the manufacturing process. In recent years, diffusion welding method has significantly increased the quality of a weld. Nevertheless, diffusion welding has some extent short research and application progress. Therefore, diffusion welding has a lack of relevant information, concerned with the joining of thick and thin materials with or without interlayers, on welding design such as fixture, parameters selection and integrated design. This article intends to combine innovative methods in the application of diffusion welding design. This will help to decrease trial and error or failure risks in the welding process being guided by the theory of inventive problem solving (TRIZ) design method. This article hopes to provide welding design personnel with innovative design ideas under research and for practical application.
PL
Spawanie jest powszechnie stosowane w procesach produkcyjnych w procesie łączenia metali. W ostatnich latach metoda spawania dyfuzyjnego znacznie zwiększyła jakość spoiny. Niemniej jednak, metoda spawania dyfuzyjnego jest mało zgłębiona badawczo i krótko stosowana. Dlatego spawanie dyfuzyjne pozbawione jest istotnych informacji, związanych z łączeniem grubych i cienkich materiałów z warstwami pośrednimi lub bez ich udziału, w konstrukcji spawalniczej, takich jak mocowanie/oprawa, wybór parametrów i zintegrowana konstrukcja. Niniejszy artykuł ma na celu połączyć innowacyjne metody w zastosowaniu spawania dyfuzyjnego konstrukcji. Pomoże to zmniejszyć ryzyko prób i błędów lub niepowodzeń w procesie spawania, kierując się teorią metody rozwiązywania problemów (TRIZ). Artykuł ten ma na celu uzbrojenie personelu projektującego konstrukcje spawalnicze w innowacyjne pomysły projektowe w obszarze badań i praktycznych zastosowań.
EN
In the present study, electroless Ni–P plating was applied to Bi–Te-based thermoelectric materials as a barrier layer and the effect of the Ni–P plating on the bonding strength of the thermoelectric module was investigated. The bonding strength of the n- and p-type modules increased after being subjected to the electroless Ni–P plating treatment. In the case of the thermoelectric module that was not subjected to electroless Ni–P plating, Sn and Te were interdiffused and formed a brittle Sn–Te-based metallic compound. The shearing mostly occurred on the bonding interface where such an intermetallic compound was formed. On the other hands, it was found from the FE-EPMA analysis of the bonding interface of thermoelectric module subjected to electroless Ni-P plating that the electroless Ni-P plating acted as an anti-diffusion layer, preventing the interdiffusion of Sn and Te. Therefore, by forming such an anti-diffusion layer on the surface of the Bi–Te based thermoelectric element, the bonding strength of the thermoelectric module could be increased.
6
Content available remote Preload retention performance of bolted connections locked with adhesive
EN
Purpose: The cyclic performance of bolted assemblies locked with adhesive are affected by various parameters, such as pitch type, diameter, surface finish, coating type, pre-torque, and loading type. The purpose of this study is to find out the influence of bolt diameter, coating type and pitch type on the preload retention performance of threaded components under cyclic loading conditions. Design/methodology/approach: In this experimental research, the effects of various bolt diameters, coating materials (base material, zinc and zinc phosphate) and pitch type on the preload retention performance of bolted joints were tested. The tests were carried out under cyclic loading conditions. Findings: The highest load cycle was measured at bolts coated with zinc phosphate and the lowest cycle number was measured at zinc coated joints. The fine pitch bolts showed higher retention performance than the coarse pitch ones. To obtain high retention performance, zinc phosphate coated and fine pitch bolts should be used. They offer important economic and technical advantages in cyclic loading conditions. They are resistant to self-loosening under vibration and impact loading. Research limitations/implications: A pneumatic vibration test machine was designed. This machine can be operated only at 25 Hz. Also, this study contains only experimental results. So, the numerical methods can be used in the future research processes. Practical implications: The findings of the experimental study are valid for the specific case of the bolted joint designing. The study helps designers to understand the behaviour of bolted joints with locked adhesive. Originality/value: The main contribution of the study is mostly on the practical side. To the authors’ best knowledge, this paper is one of few studies investigating the design of adhesively bonded threaded joint.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.