Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biorefineries
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Many factors, such as climate change and the associated risk of increasing the average temperature on the globe, energy security and the finishing of fossil fuel deposits have caused other renewable energy sources to be sought. Transport, as a branch of industry largely responsible for air pollution and greenhouse gas emissions in large cities, requires the necessary changes in the way vehicles are powered. Until now, the fuels available at petrol stations use admixtures of first generation biofuels, such as bioethanol, as a 5% additive to motor gasolines and biodiesel (FAME) as a 7% additive to diesel oil. The article presents the idea of biorefinery installations, specifies the spectrum of substrates of the second and advanced generations, which may be a biorefinery input, including waste oils that can be used to produce hydrogenated HVO vegetable oils and other high-value products. The paper presents he existing biorefinery plant in Venice resulting from the transformation of a conventional oil refinery in which HVO fuel is produced. The article also presents the parameters of this new biofuel and compared them with the parameters of other fuels used to power self-ignition engines, such as FAME and diesel, along with discussing the prospects for HVO fuel development in Europe.
2
Content available Biorefineries – factories of the future
EN
Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.
3
Content available remote Biorafinerie: ile w nich chemii?
EN
A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today’s petroleum refineries, which produce multiple fuels and products from petroleum [12]. Three biorefinery systems are distinguished in research and development [11, 13]: the „whole-crop biorefinery”, the „lignocellulosic biorefinery” and the „green biorefinery”. Moreover, a concept of „two platform biorefinery” emerged [14], which includes the sugar platform as a basis for (bio) chemical conversion of biomass and the syngas (thermochemical) platform which convert biomass into synthesis gas. This review focuses on the recent developments of basic biorefinery technologies. The whole-crop biorefinery (Figure 1) produces chemicals from sugars by biochemical (Scheme 1) and chemical (Schemes 2–11) transformations, of which twelve compounds, selected by US National Renewable Energy Laboratory (NREL) [14] are classified as „block (or platform) chemicals” with the potential to be transformed into new families („trees”) of valuable substances. These compounds are: 1,4-diacids (succinic, fumaric, malic), 2,5-furandicarboxylic acid, 3-hydroxypropionic acid, aspartic acid , glutamic acid, glucaric acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. The lignocellulosic biorefinery (Figure 2) uses biomass consisting of cellulose, hemicelluloses and lignin – an abundant and cheap feedstock. Among the potential products of the „sugar platform” are: cellulosic ethanol and hydrogen obtained by biochemical routs, and furfural, 5-hydroxymethylfurfural, the platform chemicals, (Schemes 3–11), obtained by chemical synthesis. The „syngas platform” covers three basic processes: aqueous – phase reforming of sugar polyols [109–111, 113–115] and glycerol [116–118], fast pyrolysis of biomass [121–128] and gasification of biomass [121–125]. Aqueous – phase reforming of glucose and sorbitol produces hydrogen, whereas integrated with catalytic cascade processes allows to produce liquid biofuels, i.e., branched hydrocarbons and aromatic compounds used in gasoline or longer chain linear hydrocarbons in diesel and jet fuels. Fast pyrolysis produces bio-oil that can be upgraded to transportation fuels. Synthesis gas is produced in gasification processes and may be converted into methanol or liquid hydrocarbons (so-called synthetic „Biomass–To–Liquid”, BTL-fuel) [131–133]. Finally, green biorefinery (Figure 3) uses green (wet) biomass rich in juice and oil to obtain food and non food goods, and from the latter a huge number of chemicals „produced” by Nature, i.e., by the vast diversity of plant.
4
Content available Biomasa kontra rolnictwo
PL
Kryzys energetyczny. Czynniki ograniczające i uwarunkowania energetycznego wykorzystania biomasy rolniczej i leśnej. Konkurencyjność żywności, ograniczenia powierzchni rolniczych, zmiany cen. Biomasa organiczna jako źródła energii cieplnej, elektrycznej, surowce dla wytwarzania biopaliw, doskonalenie technologii, uwarunkowania środowiskowe. Prognozy ilościowe w krajach UE 27 i RP. Energetyczne perspektywy biomasy, węgla, energii jądrowej i wodoru.
EN
Energy crisis. Limiting factors and determinants of agricultural and forest biomass use for energy purposes. Food competitiveness, limitations of agricultural land, price changes. Organic biomass as a source of thermal and electric energy, raw material for biofuel production, technology improvement, environmental determinants. Quantitative forecasts for the EU 27 countries and the Republic of Poland. Energy prospects for biomass, coal, nuclear energy and hydrogen.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.