Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 22

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biorafineria
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
According to data from the Food and Agriculture Organization of the United Nations (FAO), it is estimated that as much as 45% of food produced is wasted, which accounts for over 1.3 billion tons of food produced worldwide annually. This means that more than 30% of edible food is lost. Due to the complexity of the food chain - its multi-stage nature and complicated organizational structure - the process of managing the rational flow and management of food is a major challenge. The identification of effective solutions using valuable food ingredients constituting industrial or consumer waste concerns all participants in food supply chains, from the agricultural and industrial sectors to retailers and consumers. A number of solutions can be implemented to properly manage and prioritize food waste in a manner similar to the waste management hierarchy. The first steps of the coming change focus on changing the social awareness of the management and better use of food. Today's technologies allow the use of food waste in the production of biofuels or biomaterials. The next steps involve recirculating nutrients from food. The last and least desirable options are incineration and landfilling.
PL
Według danych Organizacji Narodów Zjednoczonych ds. Wyżywienia i Rolnictwa (FAO) szacuje się, że aż 45% wyprodukowanej żywności jest marnowane co stanowi ponad 1,3 mld ton rocznie produkowanej żywności na całym świecie. Oznacza to, że ponad 30% żywności nadającej się do spożycia jest tracone. Ze względu na złożoność łańcucha żywnościowego - jego wieloetapowość i skomplikowaną strukturę organizacyjną - proces zarządzania racjonalnym przepływem i zagospodarowaniem żywności, jest dużym wyzwaniem. Identyfikacja efektywnych rozwiązań wykorzystujących cenne składniki żywności stanowiące odpad przemysłowy czy konsumencki dotyczy wszystkich uczestników łańcuchów dostaw żywności, od sektora rolnictwa i przemysłu do detalistów i konsumentów. Szereg rozwiązań można wdrożyć w zakresie właściwego gospodarowania odpadami spożywczymi oraz uszeregowania ich pod względem ważności w sposób podobny do hierarchii gospodarowania odpadami. Pierwsze kroki nadchodzącej zmiany koncentrują się na przemianie społecznej świadomości gospodarowania i lepszego wykorzystania żywności. Dzisiejsze technologie pozwalają na wykorzystanie odpadów żywnościowych w produkcji biopaliw lub biomateriałów. Dalsze kroki przewidują powrót do obiegu składników odżywczych z żywności. Ostatnimi opcjami są spalanie i składowanie.
EN
The pretreatment is a key step in the processing of lignocellulosic biomass for its transformation into chemicals and materials of biorenewable origin. Ionic liquids, with their characteristic set of unique properties, have the potential to be the basis of novel pretreatment processes with higher effectiveness and improved sustainability as compared to the current state-of-the-art processes. In this opinion paper, the author provides a perspective on possible processing strategies for this pretreatment with ionic liquids, identifying different advantages as well as challenges to be overcome.
4
Content available remote Lignocellulosic biomass as a feedstock for the cellulose ethanol (2G) production
EN
In the paper, the possibilities of utilizing the lignocellulosic biomass in the second generation bioethanol (2G) production were presented. The most important groups of lignocellulosic raw materials were characterized. The composition and structure of biomass and the methods for its conversion to ethanol were described. Moreover, the conceptions of utilizing the lignocellulosic biomass not only as the renewable energy source for production of biofuels but also of other products with the value added within the frames of integrated technological processes in biorefineries, with the consideration of the estimated costs of cellulose ethanol production were presented.
PL
W pracy przedstawiono możliwości wykorzystania biomasy lignocelulozowej do produkcji bioetanolu drugiej generacji (2G). Scharakteryzowano najważniejsze grupy surowców lignocelulozowych. Opisano skład i budowę biomasy oraz metody jej konwersji do bioetanolu. Ponadto zaprezentowano koncepcje wykorzystania biomasy lignocelulozowej nie tylko jako odnawialnego źródła do produkcji biopaliw, ale również innych produktów o wartości dodanej w ramach zintegrowanych procesów technologicznych w biorafineriach, z uwzględnieniem szacunkowych kosztów wytworzenia etanolu celulozowego.
EN
Many factors, such as climate change and the associated risk of increasing the average temperature on the globe, energy security and the finishing of fossil fuel deposits have caused other renewable energy sources to be sought. Transport, as a branch of industry largely responsible for air pollution and greenhouse gas emissions in large cities, requires the necessary changes in the way vehicles are powered. Until now, the fuels available at petrol stations use admixtures of first generation biofuels, such as bioethanol, as a 5% additive to motor gasolines and biodiesel (FAME) as a 7% additive to diesel oil. The article presents the idea of biorefinery installations, specifies the spectrum of substrates of the second and advanced generations, which may be a biorefinery input, including waste oils that can be used to produce hydrogenated HVO vegetable oils and other high-value products. The paper presents he existing biorefinery plant in Venice resulting from the transformation of a conventional oil refinery in which HVO fuel is produced. The article also presents the parameters of this new biofuel and compared them with the parameters of other fuels used to power self-ignition engines, such as FAME and diesel, along with discussing the prospects for HVO fuel development in Europe.
EN
Biorefineries are emerging as the proper route to defeat climate change and other social, socio-economic and environmental concerns. So far, no residual lignocellulosic biomass-based biorefineries have been yet industrially implemented, mainly due to its economic viability. This article exposes some elements that may help overcome the bottlenecks associated to its social, economic and environmental sustainability: small-scale approaches, biomass valorisation through added-value products and near-zero effluent.
7
Content available RES Plants with PCM Storages for Presumes
EN
This article describes RES micro-plants: container biogas plant, SFR biogas purification plant, micro-cogeneration system (fuel cell-based), and bio refinery for the production of 2nd generation bioethanol, which can effectively cooperate with phase-change storage. Potential applications are also presented of variable-phase heat and cold storage in heating systems, in particular for adsorption systems that generate cold directly from system heat.
PL
W niniejszym artykule opisano mikroinstalacje OZE: biogazownię kontenerową, instalacje do oczyszczania biogazu SFR, układ mikrokogeneracyjny (oparte na ogniwach paliwowych) i biorafinerię do wytwarzania bioetanolu II generacji, które mogą efek- tywnie współpracować z magazynami zmiennofazowymi. Przedstawiono również potencjalne możliwości zastosowania zmien- nofazowych magazynów ciepła i chłodu w systemach ciepłowniczych, w szczególności dla systemów adsorpcyjnych generujących chłód wprost z ciepła systemowego.
EN
Ecological engineering or ecotechnology is defined as the design of sustainable production that integrate human society with the natural environment for the benefit of both. In order to reach the goal of sustainability therefore important that bioproduct production systems are converted from to natural cycle oriented. In natural cycles there are not waste, but products are generated at different stages of the cycle. The ecotechnology creates a sustainable bioeconomy using biomass in a smart and efficient way. The biorefining sector, which uses smart, innovative and efficient technologies to convert biomass feedstocks into a range of bio-based products including fuels, chemicals, power, food, and renewable oils, currently presents the innovative and efficient bio-based production can revitalize existing industries. The paper presents the concept of biorefinery as the ecotechnological approach for creating a sustainable bioeconomy using biomass in a smart and efficient way.
PL
Inżynieria ekologiczna (ekoinżynieria) jest definiowana jako połączenie zrównoważonych technologii procesów produkcyjnych z procesami zachodzącymi w naturze, aby poniesione koszty produkcyjne był minimalny, a korzyści obejmowałyby jednocześnie rozwój społeczny i środowisko naturalne. W wyniku takiego połączenia powstaje technologia dedykowana środowisku, bazującą na wiedzy i praktyce inżynierskiej. Celem równowagi jest takie opracowanie systemów produkcji, w których produkt powstaje w procesach opartych na cyklach naturalnych, a ilości powstających odpadów jest minimalizowana. Przy czym produkty mogą powstawać na różnych etapach produkcji. Ekotechnologia tworzy zrównoważoną biogospodarkę wykorzystującą biomasę w inteligentny i skuteczny sposób. Sektor biorafineryjny stanowi obecnie przykład innowacyjnej i efektywnej produkcji, która wykorzystuje inteligentne technologie przeróbki biomasy w szerokie spektrum bioproduktów obejmujących, m.in. paliwa, energię, materiały chemiczne, żywność. W artykule przedstawiono główne zagadnienia związane z koncepcją biorafinerii jako przykład inżynierii ekologicznej tworzącej zrównoważoną biogospodarkę, w której biomasa jest wykorzystywana w inteligentny i efektywny sposób.
10
Content available Biorefineries – factories of the future
EN
Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.
11
Content available Perspektywy rozwoju technologii biorafineryjnych
PL
W pracy scharakteryzowano koncepcję działania biorafinerii. Przedstawiono różne typy systemów biorafineryjnych na świecie, wytwarzających różne bioprodukty (biopaliwa, biopłyny, biochemikalia itp.) i energię. Zaprezentowano autorską koncepcję biorafinerii możliwą do wdrożenia w warunkach polskich.
EN
The paper presents description of the concept of a biorefinery platform. Different types of world biorefinery systems, producing a variety of bioproducts (biofuels, bioliquids, biochemicals, etc.) and energy are presented. An original concept of biorefineries possible to implement in Polish conditions was developed by authors.
12
Content available Microalgae as efficient feedstock for biorefinery
EN
The global energy demand keeps rising and easy accessible fossil fuel reserves are gradually decreasing which leads to increasing interest in renewable energy sources. The energy production can be based on various sources alternative to petroleum, but the material economy mainly depends on biomass, in particular plant biomass. The potential of renewable biomass resources conversion to chemicals is sufficient to replace fossil crude oil as a carbon resource. In recent years it has increasingly become clear that first generation biofuels have got comparably unfavorable energy balances and therefore most likely can never play a major role in global energy supply. Lignocellulosic biomass is much cheaper for biofuel production than first generation feedstock, but still there are no efficient treatment technologies for large-scale applications. The microalgae might be the future source of biofuels and chemicals production. Microalgal lipids and carbohydrates could be converted to biofuels and the rest of microalgal biomass contains many valuable components, all of which are worth developing into refined products for various applications.
PL
Światowy popyt na energię nieustannie wzrasta, a dostępne złoża paliw kopalnych stopniowo się wyczerpują, co przyczynia się do wzrostu zainteresowania odnawialnymi źródłami energii. Produkcja energii może być oparta na wielu alternatywnych paliwach, ale gospodarka materiałowa jest w głównej mierze oparta na biomasie, w szczególności pochodzenia roślinnego. Potencjał konwersji biomasy do użytecznych związków chemicznych jest wystarczający by zastąpić ropę naftową i węgiel. W ostatnich latach stało się jasne, że biopaliwa pierwszej generacji mają mało korzystny bilans energetyczny i prawdopodobni nigdy nie będą odgrywać znaczącej roli w globalnym rynku energetycznym. Lignocelulozowa biomasa jest znacznie tańszym surowcem do produkcji biopaliw, ale nadal nie opracowano wydajnych sposobów jej przetwarzania, które mogłyby znaleźć zastosowanie w produkcji przemysłowej na dużą skalę. Jednokomórkowe glony mogą stać się przyszłością zarówno biopaliw jak i produkcji szerokiej gamy związków chemicznych. Lipidy i węglowodany zawarte w ich komórkach stanowić mogą substrat do produkcji biopaliw, a pozostałą część biomasy zawierająca szereg cennych składników, można przetworzyć w rafinowane produkty o szerokim spektrum zastosowań.
13
Content available remote Wykorzystanie procesów fermentacyjnych w systemach biorafineryjnych
PL
W wyniku stałej eksploatacji, zasoby źródeł paliw kopalnych nieuchronnie maleją. W dobie zrównoważonego rozwoju naukowcy poszukują alternatywnych rozwiązań produkcji energii, aby nie dopuścić do całkowitego wykorzystania danych zasobów i zapobiec globalnemu kryzysowi energetycznemu. Możliwości takie daje wykorzystanie biorafinerii bazujących na procesie fermentacji surowców organicznych. Polska posiada ogromny potencjał do produkcji biomasy lignocelulozowej. Dodatkowo, jako substraty do procesu fermentacji na terenie Polski, zastosować można generowane w ogromnych ilościach osady ściekowe, odpady organiczne z przemysłu rolno-spożywczego oraz frakcję organiczną odpadów komunalnych. Przedstawiono trzy koncepcje biorafinerii możliwych do budowy na terenie Polski, wykorzystujących biomasę lignocelulozową, osady ściekowe i odpady organiczne. Oprócz charakterystyki substratów, zachodzących procesów oraz możliwych do uzyskania produktów przedstawiono także potencjalne zalety, wady oraz koncepcje rozwoju biorafinerii.
EN
A review, with 40 refs., of lignocellulosics, sludge and org. wastes-based biorafinery processes.
EN
Among currently developed biofuel and green-power technologies, technological development of lignocellulose biomass-based production of ethanol will be particularly important in a short time perspective as those specific activities constitute an intermediary stage in the process of developing integrated processes of biomass conversion in the route to the universal energy carrier - hydrogen or electricity. Agricultural biorefinery or agri-refinery which converts agricultural biomass to a wide spectrum of biofuels and bioproducts is considered as the key element of the future economy. The biorefinery which produces biofuels and generates bioenergy will constitute the so called agri-energy complex - a local power unit implemented in the system of dispersed energy generation. It is worth noticing that agri-refinery will integrate three fundamental drivers of sustainable development of rural areas - bioeconomics, environment and society. This paper aims at elaborating the conceptual framework of the agri-refinery in the aspect of conversion of agricultural lignocellulosic biomass into bioethanol and other bioproducts as well as the future economy and sustainable development.
16
Content available remote Perspektywy rozwoju biotechnologii przemysłowej w Unii Europejskiej
EN
White, or industrial, biotechnology is the application of biotechnology for the processing and production of chemicals, materials, and energy. White biotechnology uses enzymes and microorganisms to generate products in industrial sectors as diverse as pharmaceuticals and chemistry, food and feed, pulp and paper, textiles or detergents. This review gives an overview of the possible developments in the transition to bio-based production with a focus on the production of chemicals. Implementation of industrial biotechnology offers significant ecological advantages. Renewable agricultural crops are the preferential starting materials, instead of dwindling fossil resources such as crude oil and natural gas. This technology consequently has a beneficial effect on greenhouse gas emissions and at the same time supports the agricultural sector, delivering these raw materials. Moreover, industrial biotechnology frequently shows significant performance benefits compared to conventional chemical technology, such as a higher reaction rate, increased conversion efficiency, improved product purity, lowered energy consumption and significant decrease in chemical waste generation. The combination of these factors has led to the recent strong penetration of industrial biotechnology in all sectors of the chemical industry, particularly in fine chemicals but equally so for bulk chemicals such as plastics and fuels. The chemical industry in Europe, which contributes about 28% of the world demand for chemicals, has identified industrial biotechnology as a key emerging technology area. The biorefinery concept offers numerous possibilities to integrate the production of bio-energy and chemicals. This will also provide substantially higher value-added economic activities, besides promoting production in agriculture and forestry. Shifting the resource base for chemical production from fossil feedstocks to renewable raw materials provides exciting possibilities for the use of industrial biotechnology-based process tools. In a bio-based production, industrial biotechnology also interfaces with plant biotechnology (green biotechnology), where gene technology is applied to accelerate the process of plant breeding for crop improvement or for altering the composition of the feedstock for a desired product. The concept of Knowledge-Based Bio-Economy and the vision of bio-economy in Europe to 2030 presented in so called "Cologne Paper". [82] are also briefly outlined.
PL
Kierunki rozwoju technologii wytwarzania biopaliw zostały wytyczone przez Europejską Strategiczną Agendę Badawczą (ESRA), która wraz z Planem Wykonawczym została przyjęta 31 stycznia 2008 r. na posiedzeniu członków Europejskiej Platformy Technologicznej Biopaliw.
18
Content available remote Biorafinerie: ile w nich chemii?
EN
A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today’s petroleum refineries, which produce multiple fuels and products from petroleum [12]. Three biorefinery systems are distinguished in research and development [11, 13]: the „whole-crop biorefinery”, the „lignocellulosic biorefinery” and the „green biorefinery”. Moreover, a concept of „two platform biorefinery” emerged [14], which includes the sugar platform as a basis for (bio) chemical conversion of biomass and the syngas (thermochemical) platform which convert biomass into synthesis gas. This review focuses on the recent developments of basic biorefinery technologies. The whole-crop biorefinery (Figure 1) produces chemicals from sugars by biochemical (Scheme 1) and chemical (Schemes 2–11) transformations, of which twelve compounds, selected by US National Renewable Energy Laboratory (NREL) [14] are classified as „block (or platform) chemicals” with the potential to be transformed into new families („trees”) of valuable substances. These compounds are: 1,4-diacids (succinic, fumaric, malic), 2,5-furandicarboxylic acid, 3-hydroxypropionic acid, aspartic acid , glutamic acid, glucaric acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. The lignocellulosic biorefinery (Figure 2) uses biomass consisting of cellulose, hemicelluloses and lignin – an abundant and cheap feedstock. Among the potential products of the „sugar platform” are: cellulosic ethanol and hydrogen obtained by biochemical routs, and furfural, 5-hydroxymethylfurfural, the platform chemicals, (Schemes 3–11), obtained by chemical synthesis. The „syngas platform” covers three basic processes: aqueous – phase reforming of sugar polyols [109–111, 113–115] and glycerol [116–118], fast pyrolysis of biomass [121–128] and gasification of biomass [121–125]. Aqueous – phase reforming of glucose and sorbitol produces hydrogen, whereas integrated with catalytic cascade processes allows to produce liquid biofuels, i.e., branched hydrocarbons and aromatic compounds used in gasoline or longer chain linear hydrocarbons in diesel and jet fuels. Fast pyrolysis produces bio-oil that can be upgraded to transportation fuels. Synthesis gas is produced in gasification processes and may be converted into methanol or liquid hydrocarbons (so-called synthetic „Biomass–To–Liquid”, BTL-fuel) [131–133]. Finally, green biorefinery (Figure 3) uses green (wet) biomass rich in juice and oil to obtain food and non food goods, and from the latter a huge number of chemicals „produced” by Nature, i.e., by the vast diversity of plant.
19
Content available Biomasa kontra rolnictwo
PL
Kryzys energetyczny. Czynniki ograniczające i uwarunkowania energetycznego wykorzystania biomasy rolniczej i leśnej. Konkurencyjność żywności, ograniczenia powierzchni rolniczych, zmiany cen. Biomasa organiczna jako źródła energii cieplnej, elektrycznej, surowce dla wytwarzania biopaliw, doskonalenie technologii, uwarunkowania środowiskowe. Prognozy ilościowe w krajach UE 27 i RP. Energetyczne perspektywy biomasy, węgla, energii jądrowej i wodoru.
EN
Energy crisis. Limiting factors and determinants of agricultural and forest biomass use for energy purposes. Food competitiveness, limitations of agricultural land, price changes. Organic biomass as a source of thermal and electric energy, raw material for biofuel production, technology improvement, environmental determinants. Quantitative forecasts for the EU 27 countries and the Republic of Poland. Energy prospects for biomass, coal, nuclear energy and hydrogen.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.