Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  analiza wydychanego powietrza
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Wykorzystanie technologii GLAD do zastosowań w przenośnych analizatorach oddechu
PL
W pracy przedstawione zostały najważniejsze parametry technologii osadzania pod kątem GLAD (ang. Glancing Angle Deposition) z wykorzystaniem magnetronowego rozpylania jonowego w celu wytwarzania półprzewodnikowych, rezystancyjnych czujników gazów przeznaczonych do zastosowania w układach elektronicznego nosa (ang. e-nose) do analizy wydychanego powietrza.
EN
In this paper, the major parameters of the GLAD (Glancing Angle Deposition) technique with the utilization of the magnetron sputtering technology were presented. The GLAD technology was applied to deposition of resistive, semiconductor type gas sensors that will be applied to electronic nose (e-nose) for exhaled breath analysis in a portable device.
2
Content available Oddech codzienny
EN
The odor of human body has facilitated diagnosis for a long time. Sniffing the body, breath, urine and even feces became one of the useful methods in ancient medicine. For centuries, the sweet smell of the breath was associated with diabetes, the fishy smell was associated with liver disease, measles was associated with the smell of feathers, typhoid with the smell of fresh bread, and tuberculosis with stale beer. Hippocrates also linked the smell of the human body and disease, claiming that the smell of a sick person is different from that of a healthy one. He classified the characteristic odors of the body into sweet, musty, fishy and rotten. The father of chemical analysis of breath was Antonie Lavoisier, who found that carbon dioxide is exhaled by guinea pigs. The pioneer of modem breath analysis was Linus Pauling, who in 1971 presented the results of breath studies using gas chromatography (GC), showing the presence of over 200 substances. Exhaled air containing approximately 78% N2, 17% OSub>2, 3% CO2 and up to 6% water vapor. The exact concentrations of individual inorganic gases depend on many factors, mainly physical exercise, cardiac output, and lung ventilation. A mixture of many volatile organic compounds is a much smaller group of substances at concentrations 100 ppm. The substances in the breath can come from human metabolism and enter into the body by inhaled air and food. Volatile organic compounds present in the breath that can be divided into different chemical classes e.g. saturated hydrocarbons (ethane, pentane, aldehydes), unsaturated hydrocarbons (isoprene), ketones (acetone), sulfur-containing compounds (methyl mercaptan, dimethyl sulfide, dimethyl disulphide, carbon disulphide, carbonyl sulphide) and containing nitrogen (amines). Endogenous substances in the breath can be used to track physiological and pathological processes in the body. Chemical analysis of the breath can provide information regarding biochemical processes in the organism and human health. Compared to many medical diagnostic methods, it is painless, non-invasive and safe. Nowadays, the main purpose of breath analysis is to identify volatile organic compounds that can be used as markers of various diseases. Research focused on detection of lung cancer based on specific volatile organic compounds in the exhaled air is carried out in many laboratories. Rapid and non-invasive methods for early detection of lung cancer and chronic obstructive pulmonary disease is crucial for early diagnosis. This mini review presents background of breath, briefly describes main volatiles, their biochemical origin as well as potential application of exhaled gases analysis.
3
Content available remote MOX based E- nose for non-invasive biomedical applications
EN
The non-invasive method to diagnosis any disease is an attractive topic of research due to its rapid, cost effective, convenient and efficient technique. The Health status of a patient can be directly known by examined of volatile organic compound (VOC) of a patient, and this VOC can be studied by an electronic nose (e-nose). E- Nose can be easily detect different types of diseases such as lung cancer, diabetics, by analyzing the exhaled breath of a patient. In the proposed work, a brief overview has been provided about different techniques used to develop the E-nose. The importance of Low temperature co-fired ceramics (LTCC) based breath analyzer and future objectives has discussed.
PL
EW artykule przedstawiono koncepcję wykorzystania analizatora zapachów tzw. E-nosa do wykrywania chorób na podstaiw badania wydychanego powietrza. Przedstawiono różne techniki analizy. Szczególną uwagę poświecono czujnikowi typu LTCC.
PL
Istnieje wiele rozwiązań metodycznych w zakresie badań oddechu. Spośród opisanych technik chromatografia gazowa jest najczęściej wykorzystywaną metodą analizy wydychanego powietrza.
PL
Analizatory wydechu – przyrządy do pomiaru stężenia masowego alkoholu (etanolu) w powietrzu wydychanym, są wzorcowane w Polsce za pomocą wilgotnych wzorców gazowych wytwarzanych in situ w symulatorze wydechu z wodnych roztworów wzorcowych etanolu. W artykule przedstawiono opracowaną w GUM procedurę wagową sporządzania ciekłych wzorców etanolowych, wraz ze szczegółową analizą potencjalnych źródeł niepewności wyznaczonej zawartości etanolu.
EN
Breath analyzers are instruments for determination of alcohol (ethanol) mass concentration in exhaled air. These instruments are calibrated in Poland by means of wet gas standards produced in situ from aqueous standard solutions in breath simulators. The paper presents a procedure developed at GUM for the gravimetric preparation of liquid ethanol standards along with a detailed analysis of the potential sources of uncertainty of assigned ethanol content.
PL
Pewne związki chemiczne występujące w oddechu ludzkim (zwane biomarkerami) dostarczają informacji o stanie zdrowia organizmu. W artykule tym prezentujemy wyniki doświadczeń dotyczących wykrywania biomarkerów takich jak tlenek węgla, metan, amoniak i aceton przy użyciu laserowej spektroskopii absorpcyjnej w zakresie UV-NIR. Dla większości związków wymienionych powyżej osiągnięte zostały czułości detekcji umożliwiające zastosowanie optoelektronicznych sensorów do wykrywania chorób.
EN
Some chemical compounds occurring in human breath (biomarkers) provide information about health state of the organism. In this paper we present results of the experiments about detection of the biomarkers as: carbon oxide, methane, ammonia and acetone using laser absorption spectroscopy in UV-NIR range. For majority of these compounds good detection limits were achieved. These systems provide opportunity to construct fully optoelectronic disease markers sensors.
PL
W artykule omówiono optoelektroniczny system sensorów biomarkerów zawartych w wydychanym powietrzu. System ten składa się z pięciu bloków funkcjonalnych: układu pobierania próbek (UPP), układu kondycjonowania (UK), czujnika CEAS (ang. Cavity Enhanced Absorption Spectroscopy), dwuwidmowego czujnika MUPASS (ang. MUltiPass Absorption Spectroscopy System), oraz układu przetwarzania sygnałów (UPS). Układ UPP służy do pobrania od pacjenta próbki wydychanego powietrza z górnych lub z dolnych dróg oddechowych. Zadaniem UK jest minimalizacja wpływu interferentów, jakimi są m.in. para wodna, czy ditlenek węgla. Czujnik CEAS umożliwia wykrywanie tlenku azotu. Dla tego markera uzyskano granicę wykrywalności około 30 ppb. Do detekcji metanu i tlenku węgla zastosowano dwuwidmowy sensor MUPASS z jedną komórką wieloprzejściową. Dla metanu uzyskano granicę wykrywalności 100 ppb, natomiast dla tlenku węgla wyniosła ona 400 ppb.
EN
The article is related to the optoelectronic sensors system of the biomarkers contained in the exhaled human air. This system consists of five functional blocks: the sampling system (UPP), air conditioning system (UK), the cavity enhanced absorption spectroscopy (CEAS) sensor, two-wavelength multipass absorption spectroscopy system (MUPASS), and the signal processing system (UPS). UPP is used to collect a sample of the patient’s breath from the upper airways or lower airways of respiratory tract. The task of the UK is to minimize the effect of interfering substances, which include water vapor and carbon dioxide. CEAS sensor, which is designed to nitric oxide detection, provides the lowest detection limit of approximately 30 ppb. MUPASS is used for methane and carbon monoxide detecting. Lowest detection limit of 100 ppb was obtained for methane and of 400 ppb for carbon monoxide.
8
Content available remote Mikroprocesorowy czujnik CO2
PL
W artykule omówiono celowość zastosowania sensora CO2 do wykrywania biomarkerów chorobowych w wydychanym powietrzu. Opracowana została procedura wydzielenia najbardziej interesującej do celów badawczych III fazy wydechu, oraz komunikacji z układem kondycjonowania próbek gazowych. Do realizacji zadania wykorzystano platformę programistyczną Arduino bazującą na mikrokontrolerze AVR.
EN
This paper presents the concept and practice realisation of the CO2 sensor for detection of biomarkers in exhaled air. There had been developed procedure for determination and separation of the most interesting for research purposes phase III of exhalled breath and communication with gas sample conditioning system. For the realisation used Arduino software platform were used, based on AVR microcontroller.
PL
W artykule przedstawiono przykłady urządzeń do analizy wydychanego przez człowieka powietrza. Przeznaczone są one głównie do diagnostyki medycznej. W pracy przeanalizowano podstawowe właściwości komercyjnie dostępnych urządzeń zarówno przenośnych (np. elektrochemicznych, chemiluminescencyjnych), jak również bardziej złożonych np. chromatografów gazowych. Przedstawiono koncepcję systemu składającego się z czujników optoelektronicznych wykorzystujących spektroskopię strat we wnęce optycznej oraz spektroskopię z modulacją długości fali promieniowania z komórkami wieloprzejściowymi. W części eksperymentalnej przedyskutowano wstępne badania tych urządzeń w aspekcie zastosowań medycznych.
EN
The article presents some techniques for the human breath analysis in medical diagnostics. The properties of commercially available devices, both mobile (eg. electrochemical or chemiluminescent sensors), as well as more complex (gas chromatograph) are analyzed. The concept of the system consisting of two sensors based on cavity enhanced absorption spectroscopy and multipass wavelength modulation spectroscopy is described. Preliminary results of these sensors investigation in terms of medical applications are discussed in the experimental section.
PL
W pracy przedstawiono opis układu przeznaczonego do pobierania próbek markerów chorobowych. Wchodzi on w skład większego systemu służącego do pomiaru stężenia biomarkerów zawartych w wydychanym powietrzu. Przedstawiono główne problemy związane z pobieraniem oddechu od pacjenta oraz wykazano konieczność zastosowania sensora CO2 w tym układzie.
EN
In this paper, sampling system designed for exhaled breath analyzer is presented. Its main components has been characterized. One of the main elements in the system is carbon dioxide sensor. Also the model of the on-line and off-line sampling unit is described. The developed unit is an essential component of the system, which is used to measure the concentration of biomarkers contained in the exhaled air.
11
Content available Optoelektroniczne sensory gazów
PL
W artykule przedstawiono prace dotyczące optoelektronicznych sensorów gazów oraz osiągnięcia własne w zakresie wykrywania tlenków azotu (NOx). W sensorach do wykrywania NOx zastosowano polskie lasery emitujące promieniowanie o długości fali 410 nm oraz nowoczesne kwantowe lasery kaskadowe na zakres podczerwieni. Opracowane sensory charakteryzują się czułością graniczną na poziomie ppb i mogą być zastosowane do monitoringu zanieczyszczeń atmosfery, wykrywania materiałów wybuchowych oraz w diagnostyce chorób.
EN
The paper presents an overview of a few optoelectronic technologies for gases detection. Two sensors of nitrogen oxides (NOx) are also described. In the sensors the cavity enhanced absorption spectroscopy was applied. It is characterized by a very good sensitivity and selectivity of the detection process. The main aspect of its operation bases on absorption of the light by specific compounds. The identification of the matter is determined by spectral matching of the two spectra: optical radiation and absorption lines of species of interest. In contrast to the remote detection methods, the measurements are made at the place of sampling. Polish laser diodes and modern quantum cascade lasers were used there. Laser emission wavelengths were located in the visible (410 nm) and infrared range. The detection limit of ppb level was achieved. Due to that, they can be successfully applied to monitoring of atmospheric pollution, explosives detection and in diseases diagnosis. The preliminary studies using the developed sensors showed that it was possible to detect explosives such as TNT, PETN, RDX, HMX at the level of ng. Additionally, there is also discussed application of sensors to analysis of the exhaled air. This will be particularly useful for: the early detection of a disease, the monitoring of the therapy, the monitoring of the greenhouse exogenous (bacterial emissions or toxins), or the analysis of metabolic gases.
EN
In this paper, the possibility of determination of volatile organic compounds (VOCs) present in the exhaled breath using an ion mobility spectrometer (IMS) has been described. This device combines high sensitivity, analytical flexibility, low cost of individual analyses, and suitability for the real-time monitoring. The IMS is often coupled with multicapillary column (MCC), which enables the analysis of a mixture of gaseous substances in a very short time. The MCC-IMS system was calibrated for ethanol, 2-hexanone, 2-heptanone, 3-heptanone, limonene, and p-xylene. Linearity of the method was investigated in the concentration range from 0.3 to 83.8 ppb at the limit of detection ranging from 0.1 to 2.1 ppb. The presented method can be used for determination of VOCs in exhaled air, especially for early diagnosis of patients suffering from lung, larynx, mouth, and esophagus cancers.
PL
W pracy opisano możliwość oznaczania lotnych związków organicznych (VOCs) w wydychanym powietrzu za pomocą spektrometru ruchliwości jonów (IMS). Aparat ten łączy wysoką czułość detekcji oraz niski koszt pojedynczej analizy z możliwością kontroli procesów w czasie rzeczywistym. Sprzężony z kolumną multikapilarną (MCC) umożliwia analizę lotnych substancji w mieszaninie w bardzo krótkim czasie. Układ MCC-IMS skalibrowano dla etanolu, 2-heksanonu, 2-heptanonu, 3-heptanonu, limonenu oraz p-ksylenu. Liniowość metody badano w zakresie stężeń od 0.3 do 83.8 ppb, przy granicy wykrywalności od 0. l do 2. l ppb. Opracowana metoda pozwala na oznaczanie VOCs w wydychanym powietrzu i może być użyteczna w szybkiej diagnostyce osób z chorobami nowotworowymi, płuc, krtani, ust i przełyku.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.