Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 191

Liczba wyników na stronie
first rewind previous Strona / 10 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aluminum
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 10 next fast forward last
PL
Przedstawiono wpływ obecności grafitu jako fazy dyspersyjnej na właściwości mechaniczne warstw hybrydowych Ni-P/Si₃N₄/grafit, które osadzono metodą redukcji chemicznej na stopie glinu AW-7075. Wykonano badania morfologii powierzchni warstw metodą mikroskopii świetlnej i skaningowej. Dalszą część pracy stanowiły badania mechaniczne, czyli pomiary mikrotwardości warstw oraz ich adhezji do aluminiowego podłoża, a także analizy wpływu obecności grafitu na podstawowe właściwości materiału powłokowego. Zbadano próbki ze stopu AW-7075, na których osadzono metodą bezprądową powłoki hybrydowe i porównawczo nanokompozytowe o różnym składzie chemicznym, modyfikowanym zawartością faz dyspersyjnych.
EN
The mech. and adhesive properties of Ni-P/Si₃N₄ and Ni-P/Si₃N₄/graphite coatings deposited using the electroless method on the AW-7075 Al alloy were compared. Coatings with different chem. compns., modified by the content of dispersion phases (Si₃N₄ and graphite), were used. Microhardness and adhesion of the layers to the Al substrate were measured. The impact of the presence of graphite on the basic properties of the coating material was analyzed. The surface morphol. of the layers was examined using light microscopy and SEM. The incorporation of Si₃N₄ and graphite into the coating material resulted in a several-fold increase in the microhardness of the surface layer compared to the Al alloy.
EN
The aim of the work was to analyze the method of preparing the aluminum surface in terms of the functional properties of glued joints with the use of one-component polyurethane adhesive. Six methods of surface treatment of EN AW-5251 aluminum alloy were tested. In addition, changes in the shear strength of adhesive joints after environmental exposure were determined. The best surface preparation processes were atmospheric plasma and anodizing.
PL
Celem pracy była analiza sposobu przygotowania powierzchni aluminium pod kątem właściwości użytkowych połączeń klejonych z zastosowaniem jednoskładnikowego kleju poliuretanowego. Zbadano sześć metod obróbki powierzchni stopu aluminium EN AW-5251. Ponadto określono zmiany wytrzymałości połączeń klejonych na ścinanie po ekspozycji środowiskowej. Najlepszym sposobem przygotowania powierzchni była plazma atmosferyczna i anodowanie.
EN
This study goal to the ability of using low cost materials representing thermestone and aluminum solid wastes in water filtration by using a pilot plant constructed in wastewater treatment plant to remove cadmium ions (Cd(II)). Response Surface Methodology (RSM) used to optimize the optimal parameters that affecting the performance of filter units, these parameters are time, Cd(II) concentration, and filtration rate. These optimized parameters were 9 hr., 5 ppm, 10 l/hr. with removal efficiency of Cd(II) for A-Filter, T-Filter, S-Filter, and A-T-S-Filter was 94%, 95%, 86.8% and 90%, respectively. The result shows that the T-filter has higher cadmium removal efficiency than A-filter, S-filter and S-T-A- filter. While A-filter has a higher removal efficiency of cadmium than the S-filter and S-T-A- filter. While the S-T-A- filter has higher efficiency than S- filter. The result obtained from RSM was good Agreement with the result of experiments. As a result, the optimized process in this paper can be widely utilized with high removal ratio of Cd(II) ions from wastewater samples.
EN
The latest research work in the field of electric power systems focuses on the development of new wire materials which will allow the increase of the transmission capacity of power lines currently in use. The reason for this research was the often limited possibilities of continuous and failure-free transmission of electricity. In this paper, the authors present research on a new aluminium-based alloy dedicated for use as a conductive braid in the HTLS cable group. There are many technical solutions for this group of cables on the market, although they are solutions with a number of disadvantages, ranging from their high price, various operational shortcomings, complicated installation techniques, and ending with the risk of monopolistic practices, which is related to the inability to attract several competitive suppliers. The main aim of the research was to develop a new alloy based on aluminium with the addition of silver and molybdenum dedicated for use in special overhead power cables. Experimental research on new materials focused on obtaining the necessary knowledge to produce an overhead wire from these alloys with higher current carrying capacity in relation to the currently used conventional wire materials based on aluminium.
EN
In this paper, the post-weld explosive hardening of a 5 mm AA7075-T651 plate welded via FSW was performed. To investigate the possibility of increasing FSW joint mechanical properties, the welded plate was explosively treated with four various explosive materials (ammonal, emulsion explosive, FOX-7, and PBX) in two different hardening systems. As part of the investigation, the observations of the surface and macrostructure of the treated plates were described. The obtained microhardness distribution allowed us to register the increase in hardness of the SZ up to 6%, but no increase in hardness of the LHZ was reported. In most cases, the influence of explosive treatment on the mechanical properties of the welded joint was disadvantageous as ultimate tensile strength and ductility were reduced. The only positive effect which was observed is the increase in the value of yield strength up to 27% corresponding to 77 MPa, achieved by explosive materials with detonation velocity below 3000 m/s.
EN
Surface melting and alloying of Copper-Nickel (Cupronickel) alloy by preplacing aluminum powder and using tungsten inert gas process (TIG) in shielded atmosphere of argon gas were investigated. Surface melting resulted in the formation of a fairly porous dendritic microstructure. Surface alloying with aluminum resulted in the formation of Al2Cu and Al4Cu9 intermetallic compounds along with Cu-rich matrix and unstable martensitic structure. Surface melting reduced the hardness from 140 HV0.1 (substrate) to 70 HV0.1, mainly due to the loss of cold work effect of the initial substrate. On the other hand, surface alloyed zone showed a hardness of 300 HV0.1, mainly due to the formation of intermetallic compound. Tafel polarization results indicated improvement in corrosion resistance of cupronickel alloy after surface melting and alloying.
EN
Developing aluminum with good mechanical properties like hardness, tensile strength, and normal flow stress, Equal Channel Angular Extrusion (ECAE) method has been suggested as a suitable metal forming process. The load applied and extrusion temperature normally infl uences the flow stress behavior in extruded products and de- termine their mechanical properties. Consequently, how these factors affect mechanical behavior and flow stress of Al 6063 processed by ECAE was examined in this study. Extrusion temperatures were 350°C, 425°C, and 500°C with die angles of 130°, 140°, and 150°. 5 mm/s of ram speed was applied. Each extrudate’s tensile strength and hardness were measured using a Universal Testing Machine and a Rockwell hardness tester. Samples with equal dimensions and properties were also modeled using the Qform software at the extended die angle and temperature for proper analysis of flow stress in the extrudates. According to experimental results, the temperature had a greater effect on the tensile strength and hardness of the billet than the die angle. The extrudates’ grains also became finer as the billet temperature rose. Simulation findings showed that higher billet temperature led to a decrease in the extrudates’ flow stress. The simulation also demonstrated that billet temperature had a greater impact on extrusion load than die angle, with a maximum extrusion load of 5.5 MN being attained at 350 °C.
8
Content available remote Plasma welding of aluminum in an oxygen-free argon atmosphere
EN
Plasma welding is characterized by a high concentration of energy, which allows for high welding speed and leads to less distortion and residual stresses compared to conventional welding processes. Due to the local and controlled heat input, the process is suitable for sheet metal from ≈ 0.1 mm (micro plasma) up to ≈ 10 mm. In the case of aluminum and its alloys, the natural aluminum oxide layer on the metal surface limits the productivity of the plasma welding process. The electrically isolating and thermally insulating Al2O3 layer has a significantly higher melting point compared to the aluminum (Tm(Al2O3) = 2072 °C vs. Tm(Al) = 660 °C). The oxide layer hinders the formation of a stable arc and can even impede the joining formation. In order to remove the oxide layer and to produce quality welds with a DC process, it is necessary to weld with reverse polarity to use the principle of cathodic surface cleaning. However, this leads to increased electrode wear and increased penetration depth, which is not always desirable. In the study presented, the use of silane to reduce the oxygen content in the welding atmosphere as well as to remove the natural aluminum oxide layer on the metal surface was investigated. As previous studies have shown that the use of silane-doped plasma-gases is suitable for removing the superficial oxide layer on aluminum components, high-quality welded joints were expected. Quality welds with sufficient dilution were achieved using a transferred arc silane-doped helium plasma. In contrast, welding with an argon-silane mixture led to excessive pores formation. Additionally challenges to stabilize the arc process were identified and ramifications with respect to process optimization are discussed.
EN
5005A series aluminum samples were passivated to obtain a conversion coating based on Cr(III) compounds. It was shown that the corrosion resistance of galvanized aluminum in a bath containing both zirconium and cobalt compounds, measured in a 0.05 M NaCl solution, slightly increased compared to the corrosion resistance of aluminum as delivered, i.e. without conversion coating. In the case of galvanic treatment of aluminum in baths containing separately cobalt or zirconium compounds, a significant increase in corrosion resistance was achieved in relation to aluminum in the delivered condition. SEM analysis showed that in the presence of the simultaneous addition of zirconium and cobalt compounds, the most developed surface was created compared to the addition of only zirconium, where bright spheroidal precipitates occur locally. EDS analysis showed the presence of : C, O, Mg, Al and Si, small amounts of Cr, Zr, F on the surface of the aluminum covered with the Cr + Zr + HF conversion coating. During measurements with the use of the linear polarization resistance (LPR) technique, the best anti-corrosion properties were demonstrated by the samples that were passivated in a Cr(III) solution with the addition of Zr compound and HF and in a Cr(III) solution with the addition of Co compound and HF.
PL
Próbki aluminium serii 5005A poddano procesowi pasywacji z wytworzeniem powłoki konwersyjnej na bazie związków Cr(III). Wykazano, że odporność korozyjna aluminium poddanego obróbce galwanicznej w kąpieli zawierającej jednocześnie związki cyrkonu i kobaltu, mierzona w 0,05 M roztworze NaCl, nieznacznie wzrosła w stosunku do odporności korozyjnej aluminium w stanie dostarczenia, tzn. bez powłoki konwersyjnej. W przypadku obróbki galwanicznej aluminium w kąpielach, które zawierały osobno związki kobaltu lub cyrkonu, uzyskano wyraźny wzrost odporności korozyjnej w stosunku do aluminium w stanie dostarczenia. Analiza SEM wykazała, że w obecności jednocześnie dodatku cyrkonu i kobaltu powstała najbardziej rozwinięta powierzchnia. W przypadku zastosowania tylko dodatku cyrkonu jasne wytrącenia sferoidalne występują lokalnie. Analiza EDS wykazała obecność C, O, Mg, Al i Si, niewielkich ilości Cr, Zr, F na powierzchni aluminium pokrytego powłoką konwersyjną Cr + Zr + HF. Podczas pomiarów techniką liniowego oporu polaryzacji (LPR) najlepsze właściwości antykorozyjne wykazały próbki poddane pasywacji w roztworze Cr(III) z dodatkiem związków Zr i HF oraz w roztworze Cr(III) z dodatkiem związków Co i HF.
10
Content available remote Fabrication, microstructure, and machinability of aluminum metal-matrix composites
EN
Today, researchers across the world focus on sustainable products, and, accordingly, it is now imperative to develop sustainable MMCs. In line with this, ongoing experimental work aims to fabricate aluminum 6061 MMC with ground granulated blast furnace slag (GGBS) and study the micro-structural and machinability characteristics. A liquid state stir casting setup is used to melt aluminum 6061 alloy and reinforced with 2.5 wt.%, 5.0 wt.%, and 7.5 wt.% of GGBS. X-ray diffraction (XRD) studies were used to identify the chemical elements that were present in the fabricated samples. In order to observe the formation of any secondary elements, energy-dispersive X-ray spectroscopy and scanning electron microscopy (SEM) were utilized on the cast composites. Through the milling process, the influence of the GGBS reinforcement composition on the surface roughness (SR) and material removal rate (MRR) of aluminum 6061 MMC was examined, considering the parameters of spindle speed, feed rate, depth of cut, and reinforcement composition percentage. The L9 orthogonal array (OA) was used to investigate the results of the experiments, and the Taguchi technique was used to optimize the process. The best MRR value was produced by the feed rate (B3) of 260 mm3/min and the depth of cut (C3) of 0.75 mm. The study ascertained that the lower SR value is attained corresponding to a spindle speed of 1,250 rpm, a feed rate of 220 mm3/min, a depth of cut of 0.25 mm, and a reinforcement composition percentage of Al 6061 with 5% GGBS.
EN
This paper presents the process of manufacturing bimetallic composites in the shell-core system. Al17Si5Fe3Cu1.1Mg0.6Zr alloy powder was used for the shell. Pure aluminum was used as the core of the composite, respectively, in the form of a cast and then rolled rod, and in the form of a semi finished product obtained from aluminum powder. The semi-finished powders were produced by means of the uniaxial hot pressing method. From the components prepared in this way, an extrusion chargé was made by machining in an alloy shell-core system. Permanent bonding of the components and forming the required shape of the composites was carried out using direct hot extrusion under isothermal conditions. It was confirmed that the application of powder metallurgy technology for the production of one or both component materials makes it possible to conduct the extrusion of the components with significantly different plasticity without violating the cohesion of the layers. This approach made it possible to produce layered composites with high-strength properties of the outer layer and with a ductile core. The microstructural state of the components was evaluated, focusing on the continuity of the transition zone between the components. Observations of the separation lines between the layers revealed that the zone between the components was continuous, which was found for both composites, regardless of the examined cross-section. On this basis, it was concluded that the direct hot extrusion process, carried out under the adopted parameters, made it possible to combine the components very well. Selected properties of the layered composites were also determined. It was shown that the proposed method, combining powder metallurgy and hot forming technologies, makes it possible to obtain a continuous connection of components and produce products with properties significantly differentiating in the core and shell zones. These properties can be controlled by appropriate selection of the components, as well as by the method of manufacturing the core. Potential applications of the studied materials include the manufacture of bimetallic components for operation in conditions where significantly different properties of the outer zone and the core are required.
EN
In this paper, the microstructure of laser beam welded Sc-modified AA2519-F has been taken under investigation. The welded joint has been produced using Fanuc 710i industrial robot equipped with YLS-6000 6 kW laser beam source. The welding speed and laser power were equal to 0.75 m/min and 3.2 kW, respectively. The investigation involved microstructure observations with the use of both light microscope and scanning electron microscope with energy dispersive spectroscopy (EDS) analysis of chemical composition and microhardness distribution measurements. It has been stated that laser beam welding allows to obtain Sc-modified AA2519-F weld of good quality, characterized by the presence of an equiaxed grain zone containing scandium-rich precipitates adjacent to the fusion boundary.
13
Content available remote Processing of Boron Nitride Nanotubes Reinforced Aluminum Matrix Composite
EN
Aluminum and its alloys are one of the most favored metal-based materials for engineering applications that require lightweight materials. On the other hand, composites are getting more preferable for different kinds of applications recently. Boron nitride nanotubes (BNNTs) are one of the excellent reinforcement materials for aluminum and its alloys. To enhance mechanical properties of aluminum, BNNTs can be added with different processes. BNNT reinforced aluminum matrix composites also demonstrate extraordinary radiation shielding properties. This study consists of BNNT reinforced aluminum matrix composite production performed by casting method. Since wetting of BNNT in liquid aluminum is an obstacle for casting, various casting techniques were performed to distribute homogeneously in liquid aluminum. Different methods were investigated in an aim to incorporate BNNT into liquid method as reinforcement. It was found that UTS was increased by 20% and elongation at fracture was increased by 170% when BNNT was preheated at 800°C for 30 minutes.
EN
The combination of powder metallurgy and ball milling method has been widely regarded as the most beneficial route for producing multi-walled carbon nanotubes (MWCNTs)-reinforced aluminum matrix composites. In this study, the effects of different milling times (1, 2, 4, and 8 h) on the structural, morphological, and crystallographic properties of MWCNTs-reinforced Al7075 composite powders were characterized by particle size analyzer, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). After the morphological and structural characterization of the milled powders, the microstructural and mechanical properties of the hot-pressed composites were evaluated using an optical microscope, SEM, density, and Brinell hardness measurements. Considering milled powder characterization, the MWCNTs were gradually distributed and embedded within the matrix as the milling time increased. Milling for 8 h resulted in a minimum level of particle size (11 µm) with shortened and uniformly dispersed CNTs. Brinell hardness of the composite increased from 91 to 237 HB -a ⁓%160 after 8 h of milling. Such a remarkable increment in hardness could be attributed to several concurrent strengthening effects related to dispersion, solution, grain refinement, and Orowan looping mechanisms. However, relative density results revealed that the composite produced by 2 h milled powders exhibited the highest density (%99.96). The observed differences between hardness and density results were ascribed to powders’ deteriorated packing and sintering behavior due to an increment in the hardness of particles and variation in particle size range and morphology, which resulted from following different milling protocols.
EN
The fundamental aim of the research is to investigate the microstructure and mechanical properties of the AA2519-T62 laser beam welded joints obtained with various values of welding velocity. For the constant value of laser power (3.2 kW) three joints have been produced with various values of welding velocity: 0.8, 1.1, and 1.4 m/min. The joints have been subjected to microstructure analysis (including both light and scanning electron microscope), microhardness measurements, tensile tests, and fractography of tensile samples. The established values of joint efficiency contain within the range of 55-66% with the highest value (66%) reported for the joint obtained with 1.1 m/min welding velocity. The produced welds have noticeable participation of pores, which tends to increase together with the value of welding velocity. In all cases, the failure has occurred in the fusion zone by ductile fracture.
16
Content available remote Usprawnienie obróbki przedmiotów z aluminium
PL
Wiele pierwiastków chemicznych oraz ich związków ma szerokie zastosowanie w produktach dostępnych na rynku. Są obecne zarówno w produktach żywnościowych, preparatach leczniczych, jak i w kosmetykach. Na podstawie przeglądu literatury i danych producenta dokonano analizy ich aktywności oraz potencjalnych korzyści i zagrożeń wynikających z ich stosowania. Przeanalizowano też wpływ tych substancji na środowisko naturalne.
EN
A review, with 35 refs., of chem. elements and their comps. used in foods, drugs and cosmetics. Their activity, potential benefits and risks as well as environmental impacts were taken into consideration.
EN
The article presents the results of an experimental comparison of the sensitivity of biotests using Daphnia magna Straus, Ceriodaphnia affinis Lilljeborg, Paramecium caudatum Ehrenberg, and Escherichia coli Migula (strain M-17) to water pollution with aluminum compounds. The research was carried out under simulated conditions: the model toxicant was aluminum sulfate Al2(SO4)3∙18H2O, the concentration range per Al was 0.04–2.8 mg/dm3, and the pH of the tested waters was close to the neutral level of 7.2–7.8. The bioluminescence of E. coli significantly decreased at an Al concentration of 0.8 mg/dm3 (toxicity index was 93.3±1.2, which refers to a high level of toxicity). The reaction of P. caudatum was weaker: a high level of toxicity was achieved at an Al concentration of 2.8 mg/dm3. These doses did not cause the death of D. magna and C. affinis in short-term experiments (28 and 96 hours, respectively). However, in the tests for the chronic toxicity of aluminum, we showed that the doses of 0.8 and 2 mg/dm3 Al cause high death of individuals (more than 50%) and a significant decrease in the number of offspring. The range of sensitivity of the bioassay methods to water pollution with aluminum turned out to be as follows: bioassay for the bioluminescence of E. coli > bioassay for the changes in chemotaxis of P. caudatum > bioassay for the changes in fertility of D. magna > bioassay for the changes in fertility of C affinis.
PL
W artykule przedstawiono badania nad wpływem niskiej temperatury na wytrzymałość aluminium 5754 i 5083. Wykonano próbę rozciągania statycznego w temperaturze pokojowej oraz ujemnej -20°C. Na podstawie przeprowadzonych prób rozciągania badanych stopów aluminium zaobserwowano niewielki wzrost właściwości wytrzymałościowych, tj. granicy plastyczności oraz wytrzymałości na rozciąganie.
EN
Research on low temperature contribution on the strength of 5754 and 5083 aluminum are presented in this article. Static tensile tests were carried out at room and negative temperature of -20°C. A slight increase in strength properties, i.e. the yield strength and the tensile strength of studied aluminum alloys, was observed on the basis of conducted tensile tests.
PL
Z danych pozyskanych przez Stowarzyszenie „Polski Recykling” od recyklerów wynika, że w Polsce rocznie poddaje się recyklingowi wybrane frakcje odpadów: szkło – 740 tys. ton; papier – 1,14 mln ton; aluminium – 55 tys. ton; tworzywa sztuczne – 581 tys. ton. Łącznie to 2 mln 516 tys. ton surowców odzyskanych dla przemysłu i producentów, które zamiast powiększać składowiska lub zanieczyszczać przyrodę, wracają do gospodarki. To 125 800 wypełnionych odpadami ciężarówek, które ustawione w kolejce zajęłyby 2,65 tys. km, co równa się odległości z Warszawy do Madrytu.
first rewind previous Strona / 10 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.