Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  above-ground biomass
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The mangrove ecological services as carbon sinks and storage are very useful in the efforts to mitigate global warming and climate change. In this study, the above and below-ground biomass, carbon stock, as well as carbon sequestration by the mangroves in Demta Bay, Papua Province, Indonesia were estimated. Allometric equations were used to determine the mangrove biomass in 36 observation plots. The biomass value was used to determine carbon stock and estimate carbon sequestration. Nine mangrove species were found in Demta Bay, with the contribution of mangrove species to biomass (AGB and BGB) in the following order: Rhizophora apiculata > Rhizophora mucronata > Bruguiera gymnorhiza > Bruguiera cylindrica > Heritiera Littoralis > Xylocarpus molucensis > Rhizophora stylosa > Avicennia marina > Sonneratia caseolaris. The average mangrove biomass was estimated at 174.20 ± 68.14 t/ha (AGB = 117.62 ± 45.68 t/ha and BGB = 56.58 ± 22.49 t/ha). The carbon stocks in mangroves at the Ambora site were higher than the Tarfia and Yougapsa sites, averaging 123.57 ± 30.49 t C/ha, 81.64 ± 25.29 t C/ha, and 56.09 ± 39.03 t C/ha, respectively. The average carbon stock in the mangrove ecosystem of Demta Bay is estimated at 87.10 ± 34.07 t C/ha or equivalent to 319.37 ± 124.92 t CO2 e/ha. The results of this study indicate that the mangrove ecosystem in Demta Bay stores quite high carbon stocks, so it is necessary to maintain it with sustainable management. Therefore, climate change mitigation is not only done by reducing the carbon emission levels but also needs to be balanced by maintaining the mangrove ecosystem services as carbon sinks and sequestration.
PL
Najnowocześniejsze technologie teledetekcyjne takie jak naziemny skaning laserowy (TLS) umożliwiają pomiar 3D rzeczywistej struktury obiektów przestrzeni w tym drzew. Dane dostarczone przez TLS - bardzo gęste chmury punktów - reprezentują kształty i powierzchnie obiektów oraz ich rodzaj (np. z wykorzystaniem intensywności wiązki laserowej). Ekosystem leśny odgrywa ważną rolę w aspekcie regulacji zawartości dwutlenku węgla (CO2) w atmosferze jak również w zakresie sekwestracji węgla. Węgiel w lesie jest kumulowany w biomasie drzewnej: pnie drzew, gałęzie, Korzenie, liście (igły) oraz w materii organicznej w glebie. W modelowaniu sekwestracji węgla w krajobrazie z wykorzystaniem analiz przestrzennych oraz w zarządzaniu przestrzenią leśną informacja 2D wydaje się nie być wystarczająca. Potrzebna jest informacja 3D tj. rozkład przestrzenny biomasy i objętości drzewostanu. Jest to ważne nie tylko dla zarządzających przestrzenią leśną, ale i w aspekcie polityki energetycznej oraz konwencji międzynarodowych. Dla określenia przestrzennego rozkładu biomasy przeprowadzono badania w Puszczy Niepołomickiej (Regionalna Dyrekcja Lasów Państwowych w Krakowie, pododdział 153f) w drzewostanie sosnowym (Pinus sylvestris L.). Średni wiek drzewostanu wynosił 147 lat, średnia wartość pierśnicy D = 42 cm i wysokości H = 27 metrów (wg SILP). Kołowa powierzchnia badawcza (r = 18 m; powierzchnia 1017.88 m2) składała się z 16 sosen (średnia: D 46 cm; H = 26.0 m), które zostały zeskanowane przy użyciu skanera laserowego FARO PHOTON 80. Wykonano 4 skany (1 pozycja centralna i 3 dodatkowe wokół) aby uzyskać pełną reprezentację pni i koron drzew (gałęzie z igłami). Dla określenia biomasy została wybrana testowa sosna zwyczajna o pierśnicy 52.7 cm, wysokości 28.3 m, długości korony 8.6 m oraz szerokości korony 9.3 m. W celu uzyskania referencji dla analiz chmury punktów TLS zostały w terenie pomierzone średnica i obwód pnia w sekcjach co 1 m. W terenie zebrano: 490.0 kg gałęzi, 109.3 kg pędów z igłami oraz 13.5 kg jemioły. W sumie biomasa mokrej korony wyniosła 612.8 kg (96.3 t/ha). Badania laboratoryjne przeprowadzono na 6 próbkach pędów z igłami, które po wysuszeniu ważyły 53.3 kg, w tym: igły 34.0 kg, pędy 19.3 kg. Wartości z badań laboratoryjnych porównano do wyznaczonych wg wzoru empirycznego (Socha, Wężyk 2007), które wyniosły: dla pędów z igłami w stanie wilgotnym 104.1 kg. (-4.8% różnicy) i w stanie suchym 71.2 kg (33.5% różnicy). Na podstawie analizy chmury punktów TLS (woksele) został wyznaczony pionowy rozkład biomasy.
EN
The state of the art technology like Terrestrial Laser Scanning (TLS) allows measuring the 3D structure of real world objects, including trees. The data delivered by the TLS - very dense point clouds - represent shapes and surfaces of the objects and their type (e.g. using intensity of the laser beam). Forest ecosystem plays an important role in the regulation of the carbon dioxide (CO2) content in the atmosphere and in carbon sequestration as well. In forest, carbon is stored in wood biomass: tree trunks, branches, roots, foliage (needles and leaves) and in the organic material in soil. Using GIS spatial analyses for the carbon sequestration modeling, the 2D information seems to be not sufficient. 3D information of the spatial biomass and volume distribution is needed and is important not only for forest professionals, but also for energy policy and international conventions. The study was done in the Niepolomice Forest in the mature Scots pine (Pinus sylvestris L.) stand (Regional Forest Directorate Krakow. compartment 153f). The age of the stand was 147 years and mean values of DBH 42 cm and height 27 m. The study circular plot (r=18m; area ~1000sqm) consisted of 16 pines (mean: DBH 46 cm; H = 26.0 m) which were scanned using the FARO PHOTON 80. The 4 scans (1 central position and 3 additional around the central one) were made to get full representation of the tree stems and crowns (branches with needles). Tree number 13 (DBH 52.7 cm; H 28.3 m; crown length 8.6 m. crown width 9.3 m) was selected for the biomass study. The stem diameter and perimeter was measured every 1m (section) to get the references for the TLS analysis. The wet biomass of the selected tree parts was: 490.0 kg - branches. 109.3 kg shoots with needles 13.5 kg – mistletoe. The sum of the wet crown biomass was 612.8 kg (96.3 t/ha). The laboratory elaboration based of 6 samples from the crown allowed to receive the dry biomass of crown (53.3 kg) and its fractions: needles 34.0 kg, shoots 19.3 kg. The obtained results were compared to empiric formula (Socha, Wężyk 2007), which delivered results for the wet biomass of shots with needles 104.1 kg (4.8 % difference) and dry biomass 71.2 kg (33.5 % difference). Based on the voxel analysis of the TLS data the vertical characteristic of the volume and biomass distribution was determined.
EN
Voronoi area of coexisting species in a community has an important role in determining their performances as it is related with the available resources around individuals. Biomass formed within certain Voronoi area probably can be a mark of species that characterised resource competition ability of coexisting species in natural community. In this article, we tried to probe the subject in the following three aspects: 1) what is the apparent relationship between individuals' aboveground biomass and their available Voronoi area for species in natural community? 2) what is the possible theoretic relationship between them? 3) additionally, whether there are any possible indices that can be elicited from species' occupied Voronoi area to reflect species' competitive ability. Using individual-based investigation of aboveground biomass and their corresponding positions, Voronoi area of all individuals of coexisting species in an old field community were computed. The growth of an individual could be regard as a process to compete for resources that is limited by the available area or volume encompassed by the neighborhood individuals. We extended logistic growth model to describe the relationship between Voronoi area and aboveground biomass of coexisting species by relating limiting rhizospheral resource with the Voronoi area around an individual. Theoretically, the individuals aboveground biomass is also controlled by factor-ceiling effects of Voronoi area. So the extended model was fitted with boundary analysis method. And also, their linear relationship was fitted. Under the prediction that competive ability is one of the main driving factors of community succession, two parameters as the Voronoi area of coexisting species and the Voronoi area per unit of aboveground biomass were used to check whether they can designate species' competitive abilities and competitive hierarchies. This was presented by fitting the two parameters with the successional niche positions that was represented by the ordination values along abandonment ages of old field communities in the local area. The results showed that: 1) For most species, the linear regression demonstrated that Voronoi area of an individual that occupied larger Voronoi area tended to have greater aboveground biomass. The nonlinear regression of showed that the relationship might depend upon species' growth characteristics, like shade tolerance and root proliferation. Generally, the relationship could be better fitted by the extended logistic growth model using boundary analysis method than by the linear regression, except for some shade-preferring or clone species. If factor-ceiling effects were considered, at the highest, about 48% of the variation of aboveground biomass could be interpreted by Voronoi area. For some other species with light preference or clone proliferation, the determination coefficient was around zero. 2) Species. averaged Voronoi area had significant and positive Kendall's tau-b and Spearman correlations with successional niches, and species' per-unit aboveground biomass positions of Voronoi area has significantly negative rank correlation with successional niche positions. These indicate that both of them can reflect species' competitive ability and hierarchy to some extent.
EN
A vailability and heterogeneity of resources have a strong influence on community biomass and diversity, which provided a valuable opportunity to evaluate the responses of vegetation on fertilization, to test whether fertilisation can accelerate vegetation restoration in infertile lands. In loess hilly region of China, most newly abandoned infertile lands often undergo heavy soil erosion. It is urgent to promote the restoration of these types of lands. As availability and heterogeneity of soil nutrients have a strong influence on plant community, we conducted a fertilisation experiment with three-factor treatments, to test whether fertilisation can promote the biomass and species richness of an Artemisia scoparia-dominated old field community. The three factors were: spatial patterns (homogeneity and heterogeneity), levels (low, medium and high), and scales (three levels with small, intermediate, and large patches) of fertiliser application. Above- and below-ground biomass and species richness were recorded. The responses of the plant community to the three factors were evaluated and compared with those of the control (no fertilisation). The results show that: (1) The application of fertiliser in either homogeneous or heterogeneous pattern significantly increased the above-ground and below-ground biomass of the plant community as compared with the control. (2) In heterogeneous conditions, the above-ground biomass in nutrient-rich patches was significantly greater than the expected value of 50%. Under intermediate and large scales of the low level and all scales of the medium and high levels, the proportion of 0.15 cm below-ground biomass was also significantly greater than 50%. (3) Both homogeneous and heterogeneous fertilisation greatly increased community richness as compared to the control. Fertilisation, particularly heterogeneous fertilisation, can effectively increase community biomass and diversity. Under patchy habitat, it seems that the responses of vegetation to heterogeneous fertilisation are related to the patches scale and the contrast among patches, nutrient usage efficiency, edge effects on plant and soil, and plant competition are responsible for the responses. The results also suggest that heterogeneous fertilisation should be applied widely in infertile old fields to accelerate secondary succession.
EN
Theoretical and field studies on seed size and plant abundance relationship have been conducted in various communities. However, inconsistent patterns have emerged from these studies, and still little is known about alpine meadows. Here we identified four models and their predictions: the seed size/number trade-off model (SSNTM), the succession model (SM), the spatial competition model (SCM), and the triangle model (TM), in order to assess the relationship between seed size and abundance in alpine meadows, and to elucidate underlying mechanisms. The study site was situated on the eastern Qinghai-Tibetan Plateau at 3500 m above sea level. From 1999 through 2001, two indices of plant abundance (aboveground biomass and density) were simultaneously measured in 45 quadrates (0.25 m[^2]). Data for 101 plant species (mostly Cyperaceae, Poaceae, Asteraceae, Ranunculaceae and forbs) showed that seed size is like log normal distributed, and it slightly skewed in smaller-sized seeds. The SSNTM, the TM, the SM and the SCM models were not supported in this alpine meadow, and the relationship between seed size and abundance was always positive (although in some samples, the relationship was not significant). The positive correlation between seed size and abundance observed for some grassland communities was also demonstrated in the alpine meadow. It suggests that seed size depends on the plant growth form, but the biomass-density relationship is inconsistent with previous studies. This suggests that the measure of abundance used in these studies is not the only reason for inconsistency of seed size.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.