Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Nd isotopes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nd and Sr isotope data were used to characterize the sources of the Upper Triassic (Keuper) siliciclastic rocks of Silesia in southern Poland. This continental succession, consisting predominantly of fine-grained mud- stones and siltstones, yields a remarkably uniform Nd isotopic composition. Nd model ages T2DM vary from 1.56 to 1.69 Ga and εNd values are in the range from –8.9 to –11.2, documenting old crust contribution in the provenance. In contrast, the Sr isotopic composition (87Sr/86Sr) of the clastics exhibits a relatively large variation from 0.710 to 0.723. The isotopic compositions indicate that the southern part of the Germanic Basin in Silesia was supplied with clastic material from the Bohemian Massif. The axis of the drainage area must have crossed from SW to NE the Saxothuringian units of the East Sudetes and most probably also the area of the Tepla–Barrandian Unit. There is no indication of any sediment transport from the Moravo-Silesian Belt and the Fore-Sudetic Block. It seems, that the Palaeozoic rocks of the latter domain must have been buried completely during Late Triassic times.
EN
Many basement units of the Variscan orogen that are exposed in the Sudetes, SW Poland, comprise widespread ~500 Ma orthogneisses and associated mica schists, the latter often of unknown age and derivation. Our new U-Pb sensitive high resolution ion microprobe (SHRIMP) zircon ages from two samples of the Izera metagranites, both around 503 Ma, are in a good agreement with the well established late Cambrian-early Ordovician magmatism in the West Sudetes. An Archean inherited zircon age of ~ 3.4 Ga is one of the oldest zircon ages reported so far from the Bohemian Massif. The orthogneisses of the Karkonosze-Izera Massif (KIM) have calculated TDM ages of between 1.50 and 1.93 Ga, but these ages are not necessarily evidence for a Mid-Proterozoic crustal derivation: more probably, they reflect the average of several detrital components mixed into the granitoid magma sources. In spite of likely age differences, the Lusatian greywackes, which outcrop to the west, and the mica schists of the KIM display similar geochemical characteristics, suggesting that both could have been derived from similar sources. However, the presence of lower Ordovician products of within-plate volcanism - intercalations of quartzofeldspathic rocks and amphibolites within the mica schists - supports an idea that the mica schist protoliths, derived mainly from crustal rocks, could have also contained an admixture of contemporaneous volcanic materials. The age spectra of inherited zircons from the KIM orthogneisses and their Nd-isotopic signatures are comparable to the Lusatian greywackes: this suggests that the Lusatian greywackes, or very similar rocks, could have been the source material for the granitic protoliths of the KIM orthogneisses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.