Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Diesel engine
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Extensive research is being conducted to create and use a wide range of alternative fuels to accommodate the world's growing energy needs. The objective of this experimental investigation was to analyze the effects of Karanja biodiesel blends on the performance, combustion, and emission characteristics of a compression ignition (CI) engine vis-a-vis neat diesel. Important physical parameters of Karanja oil were examined experimentally after transesterification and determined to be within acceptable limits. BTE of Karanja biodiesel blends was about 3-8% lower than diesel. For Karanja biodiesel blends, BSFC was about 2-9% higher than diesel but exhaust gas temperature and volumetric efficiency were lower. Emissions characteristics such as nitrogen oxides, hydrocarbons, and carbon monoxide were also analyzed for various tested fuels. Karanja biodiesel blends resulted in lesser CO and HC formation. Nonetheless, NOx emissions were around 10% greater than diesel. Peak cylinder pressure, heat release rate, and maximum rate of pressure rise versus crank angle were among the combustion characteristics parameters considered in this study. Combustion analysis revealed that for Karanja biodiesel blends heat release rate and peak cylinder pressure were lower than for neat diesel. Findings indicate that Karanja biodiesel can be considered a viable diesel engine fuel.
EN
In earlier designs, the compression-ignition engine units were controlled by means of mechanical elements. They were levers, rods, springs, pawls, cams and others. The quality of such control did not ensure the required repeatability of control parameters in the fuel injection and combustion process. After the introduction of the standards limiting engine emissions of the limited exhaust components, the aforementioned engine control systems were not able to meet the requirements. The mechanical regulation of mechanical systems has been replaced by electronic control systems. It was the development of computer techniques and software that enabled design solutions of control systems for injection and combustion process parameters in engines with sufficient accuracy and repeatability of test results. The modern EDC (Electronic Diesel Control) control system, due to the computing power of microprocessors increased in recent years, enables meeting high requirements of modern Common Rail injection systems. The article presents issues in the area of four thematic levels: the design and modernization of the engine, its operation, diagnostic problems in order to determine reasons of unit failures and bench-top methods for assessing the effectiveness of unit repairs as well as issues concerning alternative fuels.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.