Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 336

Liczba wyników na stronie
first rewind previous Strona / 17 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  3D printing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 17 next fast forward last
EN
The article presents research on finishing treatment applied to components made of Inconel through 3D printing by Laser Powder Bed Fusion method. Vibration-abrasive machining was carried out using a supporting fluid and various shapes of abrasive. The effects of the processing conditions were analysed based on the surface roughness of the samples and mass loss. The obtained collective results were subjected to comparative analysis with the effects of vibratory-abrasive processing without the use of a processing fluid, as presented in the article. The research has shown that using vibration-abrasive processing, it is possible to reduce the height of surface irregularities by more than three times after four hours of treatment. The intensity of processing was the highest in the first hour of the process. The lowest roughness heights Ra = 1.8 μm were obtained using ceramic balls in the presence of a supporting fluid.
PL
Druk 3D jest znany jako "produkcja addytywna", tj. technologia polegająca na tworzeniu trójwymiarowych obiektów poprzez nakładanie na siebie warstw materiału. Obecnie znajduje zastosowanie w wielu dziedzinach, w tym: produkcji prototypów, medycynie, lotnictwie i kosmonautyce. W prototypowaniu druk 3D pozwala znacznie przyspieszyć proces projektowania i obniżyć koszty dzięki możliwości wczesnego testowania różnych wersji prototypu. W planowaniu infrastruktury miejskiej druk 3D pozwala na produkcję realistycznych modeli całych miast lub poszczególnych elementów, takich jak mosty, drogi czy osiedla mieszkaniowe. Daje to możliwość późniejszej szybkiej modyfikacji projektów i dostosowania ich do zmieniających się potrzeb miasta. W niniejszej pracy przedstawiono przykłady wykorzystania wybranych technologii druku (FDM i CJP) w prototypowaniu i planowaniu przestrzennym.
EN
3D printing is known as 'additive manufacturing' i.e. a technology that involves creating three-dimensional objects by adding layers of material on top of each other. Currently, it is used in many areas, including: prototype production, medicine, aviation and cosmonautics. In prototyping, 3D printing allows tosignificantly speed up the design process and reduce costs thanks to the possibility of early testing of different versions of the prototype. In planning urban infrastructure, 3D printing allows on production of realistic models of entire cities or individual elements, such as bridges, roads or housing estates. This makes a possibility to quickly modify projects later and adapt them to the changing needs of the city. This work presents examples of the use of selected printing technologies (FDM and CJP) in prototyping and spatial planning.
EN
The influence of saliva pH on the adhesion of Candida albicans to PMMA-based prosthetic materials manufactured using conventional and digital techniques (3D printing, milling) was examined. The obtained data were subjected to statistical analysis using one-way ANOVA and the Tukey HSD post hoc test (α = 0.05). Materials obtained by 3D printing had the highest surface roughness, while those obtained conventionally had the highest number of CFU (colony-forming unit). The mean CFU value was highest at pH 4.5 and statistically significant compared to other pH values. No significant correlation was found between surface roughness and the average CFU value. The surface of materials obtained using the conventional and milling methods showed lower adhesion of Candida albicans.
PL
Zbadano wpływ pH śliny na adhezję Candida albicans do materiałów protetycznych na bazie PMMA, wytwarzanych technikami konwencjonalnymi i cyfrowymi (druk 3D, frezowanie). Otrzymane dane poddano analizie statystycznej za pomocą jednoczynnikowej analizy ANOVA oraz testu post hoc Tukeya HSD (α= 0,05). Materiały uzyskane metodą druku 3D wykazywały największą chropowatość powierzchni, a otrzymane konwencjonalnie charakteryzowały się największą liczbą CFU (ang. colony-forming unit). Średnia wartość CFU była największa przy pH 4,5 i statystycznie istotna w po¬równaniu z innymi wartościami pH. Nie stwierdzono znaczącej korelacji pomiędzy chropowatością powierzchni a średnią wartością CFU. Powierzchnia materiałów otrzymanych metodą konwencjonalną i metodą frezowania wykazywała mniejszą adhezję Candida albicans.
EN
The article presents preliminary research on the influence of calcium phosphate (10–40 wt%) on the functional properties of ABS. Maleic anhydride grafted polyethylene was used as a compatibilizer (0.5 wt%). The mass flow rate, tensile properties and hardness were determined. The effect of the filler on the color change of the polymer matrix was also examined. For a composite containing 20 wt% calcium phosphate, the mechanical properties of samples obtained by 3D printing and injection molding were compared, with worse properties obtained by 3D printing. This can be explained by limited adhesion between the printed layers.
PL
W artykule przedstawiono wstępne badania wpływu fosforanu wapnia (10–40% mas.) na właściwości użytkowe ABS. Jako kompatybilizator użyto polietylen szczepiony bezwodnikiem maleinowym (0,5% mas.). Określono masowy wskaźnik szybkości płynięcia, właściwości mechaniczne przy rozciąganiu i twardość. Zbadano także wpływ napełniacza na zmianę barwy osnowy polimerowej. Dla kompozytu zawierającego 20 wt% fosforanu wapnia porównano właściwości mechaniczne próbek uzyskanych metodą druku 3D i formowania wtryskowego, przy czym gorsze właściwości uzyskano metodą druku 3D. Można to wyjaśnić ograniczoną przyczepnością pomiędzy drukowanymi warstwami.
EN
The study examined influence of steam sterilization and the raster angle (0°, 90°) on the deflection of polymer shapes obtained by 3D printing. In the case of PEEK and PLA, the FDM/FFF method was used, in the case of photocurable resin, DLP technology, and in the case of MED610, PolyJet technology. It was shown that the raster angle, type of material and sterilization have a significant impact on the strength and deformation of the tested polymers. A model of a facial bone implant was also developed and the suitability of the tested materials for obtaining this type of implants was examined. The dimensional accuracy of the implant models was highest for the MED610 model. However, due to the significant deflection of this polymer under load, its use is only possible in areas of low stress. In the case of UV resin printed in the vertical direction (90°), the samples showed the least deflection and the printed model had no visible defects. The greatest deformations occurred at the ends and narrowing’s of the model.
PL
W pracy zbadano wpływ sterylizacji parą wodną oraz kąta rastra (0°, 90°) na ugięcie kształtek polimerowych uzyskanych metodą druku 3D. W przypadku PEEK i PLA zastosowano metodę FDM/FFF, dla żywicy fotoutwardzalnej technologię DLP, a MED610 technologię PolyJet. Wykazano, że kąt rastra, rodzaj materiału oraz sterylizacja mają istotny wpływ na wytrzymałość i odkształcenie badanych polimerów. Opracowano także model implantu kostnego twarzoczaszki i zbadano przydatność badanych materiałów do otrzymywania tego typu implantów. Dokładność wymiarowa modeli implantów była najwyższa dla modelu MED610. Jednak ze względu na znaczne ugięcie tego polimeru pod obciążeniem jego zastosowanie jest możliwe jedynie w obszarach o małych naprężeniach. W przypadku żywicy UV drukowanej w kierunku pionowym (90°) próbki wykazywały najmniejsze ugięcie, a otrzymany model nie miał widocznych wad. Największe odkształcenia wystąpiły na końcach i zwężeniach modelu.
EN
Influence of the filler (alumina, copper, carbon fiber) and FDM printing parameters on PLA tensile strength was investigated. FDM process parameters (raster angle, layer thickness, number of coatings) were optimized using the ANOVA test. It was found that the most important parameter is the raster angle. Tensile strength increases as the raster angle increases and the number of shells as well as layer thickness (larger number of infills) decreases. The highest strength was achieved for PLA/PLA-Al2O3.
PL
Zbadano wpływ napełniacza (tlenek glinu, miedź, włókno węglowe) i parametrów druku FDM na wytrzymałość na rozciąganie PLA. Parametry procesu FDM (kąt rastra, grubość warstwy wewnętrznej, liczba warstw zewnętrznych) optymalizowano za pomocą testu ANOVA. Stwierdzono, że najbardziej istotnym parametrem jest kąt rastra. Wytrzymałość na rozciąganie wzrasta wraz ze wzrostem kąta rastra oraz zmniejszeniem liczby warstw zewnętrznych jak również grubości warstwy wewnętrznej (większa liczba wypełnień). Największą wytrzymałość uzyskano dla PLA/PLA-Al2O3.
7
EN
Appropriate packaging is essential to protect products from external contamination, physical damage or food spoilage. The latest innovations in the packaging industry are mainly limited to the development of new polymeric barrier materials and composite or green, environmentally friendly materials. However, recently, new active, and/or intelligent (smart) packaging is being developed that can extend the shelf life of a product, keep it in good condition and help control the quality of food products. This review presents the latest developments and applications of additive manufacturing in the production of smart food packaging.
PL
Odpowiednie opakowanie jest niezbędne, aby chronić produkty przed zanieczyszczeniami z zewnątrz, uszkodzeniami fizycznymi lub zepsuciem się żywności. Najnowsze osiągnięcia w branży opakowań ograniczają się głównie do opracowania nowych polimerowych materiałów barierowych oraz kompozytowych lub ekologicznych materiałów przyjaznych dla środowiska. Jednak ostatnio opracowywane są nowe opakowania aktywne i/lub inteligentne (smart), które mogą wydłużyć okres przydatności do spożycia produktu, utrzymać go w dobrym stanie i pomóc kontrolować jakość produktów spożywczych. W niniejszym artykule przedstawiono najnowsze osiągnięcia i zastosowania wytwarzania przyrostowego w produkcji inteligentnych opakowań do żywności.
EN
In this article novel technological solutions for applying additive manufacturing technologies in the biomedical and biotechnological industry are showcased. The BioCloner Desktop (referred to as ‘Desktop’) is a miniaturised version of an industrial printer developed as part of a project regarding utilising additive manufacturing technologies for manufacturing of bioresorbable implants. In the years 2016-2019, the project was financed from EU resources (project number POIR.01.01.01-00-0044/16-00). During this project, industrial-sized solutions dedicated for medical and pharmaceutical applications were developed. The Desktop was developed as a way of expanding the possibilities of research and development in a standard biomedical laboratory. The size of the described printer allows it to be placed inside a laminar flow cabinet. The Desktop is a device which meets the growing need for multipurpose compact desktop bioprinters dedicated for research and development applications. Currently, commercially available laboratory-scale machines lack an open architecture, which puts boundaries on research. Miniaturisation of the BioCloner bioprinter did not sacrifice its key feature of supporting multitool print and convenience of construction for further specialisation. The BioCloner project, besides bioprinters, also includes dedicated slicing and printer control software. Thanks to its multiplatform compatibility, it is possible to easily increase the scale of production directly after the research process. The Desktop is equipped with printheads that facilitate multiple methods of 3D printing. From the most popular fused filament fabrication (FFF) to the versatile fused granulate fabrication (FGF) to highly specialised printheads for bioprinting, designed to dispense hydrogels via pressure extrusion. The printheads have also additional features required in the bioprinting process, such as UV crosslinking lights and temperature control (heating as well as cooling). In this article, key features of both the BioCloner Desktop bioprinter and the dedicated BioCloner 3D slicing-operating software are outlined. Its second part is a report on the bioprinter’s usage in the Biomedical Engineering Laboratory, named after E.J. Brzeziński, located at Faculty of Mechanical and Industrial Engineering of Warsaw University of Technology. During the study, hydrogel cell scaffolds for culturing WEHI-164 mouse fibroblasts were produced. The structures were obtained using a gelatin methacrylate (GelMa)-based commercially available bioink deposited directly into a cell culture vessel. The structures were fully crosslinked immediately after printing. All printed scaffolds supported cell proliferation. There were no observed signs of contamination, and the conducted field tests confirmed the assumed functionality of the BioCloner Desktop bioprinter.
PL
W artykule przedstawiono nowatorskie rozwiązania techniczne pozwalające na wykorzystanie technologii addytywnego wytwarzania w branżach biomedycznej i biotechnologicznej. BioCloner Desktop (dalej: „Desktop”) jest zminiaturyzowanym rozwiązaniem opracowanym w ramach trwającego od 2016 r. projektu BioCloner, mającego na celu wdrożenie technik przyrostowych w procesie produkcji implantów wchłanialnych. Projekt ten w latach 2016-2019 był finansowany ze środków UE (projekt POIR.01.01.01-00-0044/16-00 - Pierwsza polska biodrukarka dedykowana do implantów wchłanialnych - BioCloner). W ramach projektu BioCloner opracowano rozwiązania wielkogabarytowe przeznaczone do zastosowania w branży medycznej i farmaceutycznej. Desktop został opracowany z myślą o poszerzeniu możliwości prac badawczo-rozwojowych w typowym laboratorium biomedycznym. Wymiary drukarki BioCloner Desktop pozwalają na pracę w warunkach podwyższonej czystości oraz wewnątrz komory laminarnej. Desktop stanowi odpowiedź na rosnące wymagania stawiane przed kompaktowymi drukarkami nabiurkowymi wykorzystywanymi w pracach badawczo-rozwojowych. Dostępne na rynku urządzenia przeznaczone do biodruku w skali laboratoryjnej nie posiadają otwartej architektury, przez co ograniczają zakres prowadzonych prac badawczo-rozwojowych. Przy zmniejszeniu biodrukarki 3D zachowano wyróżniające BioCloner cechy - wsparcie druku wielogłowicowego oraz otwartość konstrukcji, która pozwala na rozwijanie kompatybilnych głowic i akcesoriów wspierających proces biodrukowania 3D. Projekt BioCloner poza wymienionymi biodrukarkami 3D obejmuje również dedykowane oprogramowanie sterujące zawierające kluczowe z perspektywy biodruku funkcjonalności. Dzięki międzyplatformowej kompatybilności sterowników możliwe będzie szybkie zwiększenie skali produkcji po zakończeniu prac badawczo-rozwojowych. Desktop jest wyposażony w głowice wspierające różne metody druku przestrzennego. Od najpopularniejszego druku termoplastycznym filamentem fused filament fabrication (FFF), poprzez druk wykorzystujący nadtopiony granulat fused granulate fabrication (FGF), po głowice ciśnieniowe opracowane specjalnie do wymagań stawianych przez biodruk. Przykładem tego są głowice przeznaczone do ekstruzji ciśnieniowej hydrożeli z wieloma dodatkowymi funkcjami, takimi jak sieciowanie UV oraz kontrola temperatury (zarówno grzanie, jak i chłodzenie). Opisywana w artykule drukarka została przetestowana w Laboratorium Inżynierii Biomedycznej im. E.J. Brzezińskiego mieszczącym się na Wydziale Mechanicznym Technologicznym Politechniki Warszawskiej. Wytworzono w nim rusztowania do hodowli fibroblastów mysich WEHI-164. Struktury zostały wydrukowane z hydrożelu bazującego na metakrylowanej żelatynie (GelMa), bezpośrednio w naczyniu przeznaczonym do dalszej inkubacji hodowli. Wszystkie otrzymane struktury pozwalały na zagnieżdżenie się i proliferację rozważanych w badaniu komórek. Nie zaobserwowano oznak zakażenia w trakcie hodowli. Przeprowadzone testy potwierdzają zakładaną funkcjonalność biodrukarki Desktop.
EN
This paper presents the results of static strength tests carried out, i.e. tensile, bending and compression tests. The tests were performed on the basis of ISO 527, ISO 178 and ISO 604 standards. The study used a photo-curable resin with the trade name MED610, which meets a number of biocompatibility requirements and can be used for medical applications. PolyJet Matrix 3D printing technology was used to produce the test samples. The study showed a clear anisotropy of mechanical properties due to the printing orientation, particularly noticeable for the tensile and bending tests.
PL
W artykule przedstawiono wyniki przeprowadzonych statycznych prób wytrzymałościowych, tj.: próby rozciągania, zginania i ściskania. Badania wykonano w oparciu o normy ISO 527, ISO 178 oraz ISO 604. W badaniu zastosowano żywicę fotoutwardzalną o nazwie handlowej MED610, która spełnia wiele wymagań dotyczących biokompatybilności i może być stosowana w aplikacjach medycznych. Do produkcji próbek wykorzystano technologię druku 3D PolyJet Matrix. Badanie wykazało wyraźną anizotropię właściwości mechanicznych, zauważalną zwłaszcza w testach rozciągania i zginania.
PL
Technologia druku 3D ma coraz większe zastosowanie w budownictwie. W artykule zaprezentowano ocenę przydatności wybranych polimerów do druku modeli laboratoryjnych służących do identyfikacji częstotliwości drgań własnych obiektów na stole wstrząsowym. Wyznaczono doświadczalnie parametry fizykomechaniczne polimerów, a także obliczono skale podobieństwa w przypadku modeli wydrukowanych z analizowanych polimerów. Wskazano na parametry materiałowe polimerów warunkujące możliwość i zasadność ich stosowania w badaniach dynamicznych na stole wstrząsowym.
EN
3D printing technology is gradually becoming more employed in civil engineering. The article assesses the suitability of selected polymers for printing laboratory models used to identify the natural frequencies of structures on a shaking table. Experimental physical and mechanical parameters of the polymers were determined, and similarity scales were calculated for models printed with the analysed polymers. The material parameters of the polymers determining the possibility and validity of their use in dynamic tests on a shaking table were also indicated.
EN
In this present study, the fused deposition modeling (FDM) method was used to fabricate the composites. Before three-dimensional (3D) printing, samples were designed according to the ASTM D256, D790 and D3039 standards for impact, flexural and tensile tests, respectively, using Onshape software before conversion to an STL file format. Afterward, the digital file was sliced with infill densities of 60%, 80%, and 100%. The composite samples contained chopped carbon fiber (cCF) and poly lactic acid (PLA), as reinforcement and matrix, respectively. The cCF/PLA (simply called cCFP) filaments were printed into various cCFP composite (cCFPC) samples, using a Viper Share bot 3D machine with different infill densities before the aforementioned mechanical testing. The tensile strength of cCFP were obtained as 25.9MPa, 26.9MPa and 34.75MPa for 60%, 80% and 100% infill density cCFP samples, respectively. Similarly, the flexural strength of cCFP were obtained as 11.8MPa, 12.55MPa and 18.4MPa and impact strength was 47.48kJ/m2, 48.45kJ/m22 for 60%, 80% and 100% infill density cCFP samples, respectively. The fractured/tested samples were examined and analyzed under a scanning electron microscope (SEM) to investigate the presence of fiber and void in the tensile sample. Based on the experimental results, it was evident that a high infill density of 100% with the highest reinforcement exhibited maximum impact strength, tensile and flexural strengths and moduli when compared with other lower carbon content of cCFPC samples. Therefore, the optimal 3D-printed cCFPC sample could be used for engineering application to benefit from properties of the polymer matrix composite materials and possibilities through additive manufacturing (AM).
EN
Additive manufacturing (AM) technologies have been gaining popularity in recent years due to patent releases – and in effect – better accessibility of the technology. One of the most popular AM technologies is fused deposition modeling (FDM), which is used to manufacture products out of thermoplastic polymers in a layer-by-layer manner. Due to the specificity of the method, parts manufactured in this manner tend to have non-isotropic properties. One of the factors influencing the part’s mechanical behavior and quality is the thermoplastic material’s bonding mechanism correlated with the processing temperature, as well as thermal shrinkage during processing. In this research, the authors verified the suitability of finite element method (FEM) analysis for determining PET-G thermal evolution during the process, by creating a layer transient heat transfer model, and comparing the obtained modelling results with ones registered during a real-time process recorded with a FLIR T1020 thermal imaging camera. Our model is a valuable resource for providing thermal conditions in existing numerical models that connect heat transfer, mesostructure and AM product strength, especially when experimental data is lacking. The FE model presented reached a maximum sample-specific error of 11.3%, while the arithmetic mean percentage error for all samples and layer heights is equal to 4.3%, which the authors consider satisfactory. Model-to-experiment error is partially caused by glass transition of the material, which can be observed on the experimental cooling rate curve after processing the temperature signal.
EN
Purpose: of the study is to investigate the ultimate flexural strength and Young’s modulus of some materials, which can be used for complete denture fabrication by Masked stereolithography 3D printing technology. Design/methodology/approach: Three groups of five specimens each were fabricated. Two of the groups are 3D printed by Masked SLA 3D printer of two commonly used denture base resins. The third group is set to be a control as the specimens were fabricated of a heat-curing acrylic resin. A three-point flexural test tested the objects, and the data collected was used to determine ultimate flexural strength and Young’s modulus calculation. All the results are compared to the ISO Standard 20795-1. Findings: The data shows that the mean ultimate flexural strength of the 3D printed specimens is 87 MPa - 89 MPa. Their results are very similar to those for the heat-curing acrylic resin, which means the ultimate flexural strength is 93 MPa. The mean Young’s modulus obtained for the first group of 3D printed specimens is 2263.21 MPa and 2377.44 MPa for the second one. As for the control group, 2396.06 MPa is achieved. When ISO Standard 20795-1 is inspected, all the data obtained covers the minimum requirements. Research limitations/implications: The limitations of the study concern to some additional factors that should be observed for more detailed evaluation. For example, the level of the final polymerization of light-curing resins for 3D printing, their ability to washstand to different defect and denture-bearing area characteristics (the notch for the labial and buccal frenulum, chambers for torus release, etc.), the ability of the materials to withstand to cyclic load, etc. Practical implications: 3D printing is faster and cheaper than conventional methods for complete denture fabrication. The knowledge about the mechanical properties of the different materials for 3D printing is very valuable for properly selecting a material and approach for complete denture fabrication. Originality/value: Nowadays, 3D printing is essential in dentistry. For this reason, observation and knowledge of the raw materials properties is very important for the proper choice of a material and/or technology for each clinical case.
EN
As a part of this work, an analysis of the current state of knowledge regarding the use of additive technology - binder jetting in the production of castings was made. The binder jetting (so-called 3D printing) has become the leading method of sand mold and core production. Within this paper types of molding and core sands with organic and inorganic binders that are and can be used in technology were analyzed. The need to carry out works aimed at developing pro-ecological molding / core sands with inorganic binders and organic binders with reduced harmfulness to the environment dedicated to binder jetting technology was noticed. The influence of technology parameters on the properties of molding / core sands and the properties of cast components was analyzed. It was shown that thanks to the unlimited shapes of the systems obtained with the use of additive technologies, it is possible to influence the rate of heat dissipation through the mold, which positively effects the process of solidification and crystallization of the castings.
EN
Fused Deposition Modelling (FDM) 3D printing technology has become popular for producing prototypes and final parts in various industries, including the automotive, aerospace, and medical sectors. The leakage of such components is often an important factor in determining their possible applications. This paper focuses on researching the influence of printing parameters on leakage and relating the results to the strength of parts produced using this technology. The printing parameters considered were temperature and layer height. PLA (polylactic acid) was chosen as the material due to its biodegradability and biocompatibility. Leakage measurements were carried out using an empty cylinder-shaped vessel filled with air under pressure. The leakage value was observed as a pressure drop over time. It was shown that 3D-printed FDM vessels are not perfectly leak-proof, but the value of observed leakage may be acceptable for selected applications (leakage below 2.5 Pa/s). The results showed a high correlation be-tween the height of the printed layer in both the leakage and strength of the tested samples, while reducing the height increased the tightness and strength of the 3D-printed parts. The effect of printing temperature was less significant.
EN
The article presents analysis of mechanical properties of specimens fabricated by fused deposition modeling (FDM). The four of considered materials are the well-known 3D printing filaments i.e., polylactide (PLA), Nylon 12 (PA12), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol (PET-G). The other four of the considered materials are composites with carbon i.e. polylactide with carbon fiber (PLA-CF), Nylon 12 with carbon fiber (PA12-CF), acrylonitrile butadiene styrene with carbon fiber (ABS-CF), polyethylene terephthalate glycol with carbon fiber (PETG-CF). The paper describes how the specimens were designed, printed, subjected to tensile testing, and examined using microscopy. The obtained data will be used to select the optimum material for the rapid manufacture of lower limb orthoses. Carbon composites were found to have better mechanical properties of their base material, but the fabrication of composite samples is much more time consuming, for the reason that the manufacturing process is not stable.
EN
Additive manufacturing methods give the opportunity to produce interesting, new structures with a more complicated topology than would be possible using traditional methods. Methods: Using the selective laser sintering method, a disk with a high roughness and porous structure was produced. Studies of material surface were performed on microscopic devices. An in vitro experiment was performed on the manufactured disk using mice fibroblastic cells. Results: The designed shape enabled the growth of the cell culture in the disc pores and ensured impermeability of the disc base. Based on average viability 79%, which is close to reference well (80%), preliminary results confirmed that the manufactured structures create sufficiently comfortable conditions for the cell cultures without the need to design its internal topography. Conclusions: Controlling the production parameters of SLS printing allows to obtain structures characterized by spatial and surface porosity without designing inner geometry of the structure. Polyamide 2200 (PA2200) powder with a laser beam, offers new possibilities for producing surfaces used in the tissue engineering, bioreactors, and microfluidics devices.
EN
The article describes each stage of the autocatalytic electroless metallization process of thermoplastic polymers produced with 3D printing technology. In particular, the influence of the preparation of the sample's surface layer on the quality of the finished metallic coating was assessed. Samples made of polylactide filament and polylactide with the addition of copper were subjected to metallization. In the metallization process, six different etching solutions were prepared to etch the polymer’s surface layer. The concentration of sulfuric acid VI was 200g/dm³ or 100g/dm³, sodium hydroxide 100g/dm³, and potassium permanganate 50g/dm³ or 20 g/dm³. The microscopic analysis and measurement of the arithmetic mean of the ordinates of the surface roughness profile of the samples for the selected process steps are presented.
EN
The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the 𝐶ℎ𝑖2:0.0001 and 𝑅2:0.997 coefficients.
EN
The paper shows a preliminary study of the basic strength parameters of printed parts made of biocompatible polymers with ceramic layers applied to increase the strength of the tool cutting surface. Methods: The specimens were made from different materials and using different 3D printing technologies and the working surfaces that will eventually form the cutting element of the tool were coated with Al2O3. Gloss tests were conducted, properties of the coating, a scratch test of the coated surface, also evaluated surface topography. Results: Based on the conducted research, it was found that polymeric materials are characterized by sufficient strength and can be used for disposable tools, however, the use of thin layers of Al2O3 significantly increases the surface strength parameters, which may have a significant impact on the reliability and durability of the tools. The polymer surface covered with an Al2O3 layer is characterised by increased scratch resistance ranging from 24% to 75% depending on the core material and printing technology. The gloss of the surfaces is disproportionately low compared to currently used metal tools, which indicates that they can be used in endoscopic procedures. Conclusions: Based on the conducted research, it was found that the use of thin layers of Al2O3 covering polymer 3D prints is an excellent way to increase strength parameters such as scratch resistance, tribological parameters and light reflections arising on the surface as a result of endoscopic lighting are disproportionately small compared to metallic biomaterials. This gives great hope for using polymer 3D prints for personalised neurosurgical tools.
first rewind previous Strona / 17 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.