Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In view of the shortcomings of traditional wall defect detection methods, such as small detection range, poor accuracy, non-portable device, and so on, a wall defects detection device based on Compton backscattering technology is designed by Monte Carlo method, which is mainly used to detect the size and location information of defects in concrete walls. It mainly consists of two parts, the source container and the detection system: first, through the simulation and analysis of the parameters such as the receiving angle of thebackscattered particles and the rear collimating material of the detector, the influence of the fluorescent X-ray peak of the detector collimating material on the backscattered particle counts is eliminated and the detected error is reduced; second, the ring array detector design, compared with single array detector and surface array detector, can facilitate real-time detection of defect orientation, expanding the single scan range and improving the detection efficiency. After simulation and comparative analysis, the relevant optimal parameters are obtained: the object is detected using a Cs-137 γ-ray source with an activity of 6 mCi, and a ring detector consisting of four 0.5-inch cube-shaped CsI scintillator detectors is placed at 150° to receive the backscattered photons. The simulation analysis using the Monte Carlo FLUKA program showed that the maximum depth of wall defect detection is 8 cm, the maximum error fl uctuation range of defect depth and thickness is ±1 cm, the overall device weight is <20 kg, and the measurement time is <5 min.
EN
This study establishes a near-ground reference radiation field based on typical radionuclides of the Fukushima accident in response to the need for vehicle-borne environmental radiation measurement equipment that can accurately evaluate the environmental dose of nuclear accidents. The Monte Carlo code FLUKA is used to study the environmental dose of such equipment in the early and mid-late reference radiation fields of nuclear accidents. Results of the air dose rate at 1 m above the ground were corrected to eliminate data difference between diverse measurement platforms. Simulation results show that t he dose correction factor (CF) fluctuates at approximately 0.8813 in the early reference radiation field and at approximately 0.6711 in the mid-late reference radiation field . This deviation of the dose CF in the early and mid-late reference radiation field s is within 2% and is not affected by the change in detector position. This research can be applied to obtain more accurate measurement of an ambient dose in the near-ground radiation field and support the vehicle-borne environmental radiation measurement technology.
EN
To improve the groove charge consistency and density and to reduce the initiation synchronicity error of a rigid multi-point initiation explosive network, a CL-20-based ultraviolet (UV)-curable high-explosive ink, comprising 42 wt.% sub-micron CL-20, a 55.4 wt.% binder system (including 2.0 wt.% NC and 53.4 wt.% butyl acetate), and 2.6 wt.% UV-curable resin, based on direct ink writing (DIW) technology, was prepared. The properties of the composite sample deposited via DIW were characterized. The results indicated that the sample had good uniformity, with few defects, and a critical detonation size of around 1.5×0.283 mm. A six-point initiation explosive network was designed for the integration of DIW technology and precise press-loading of the charge. The network featured six pre-pressed booster pellets with the same charge density (ρ0 = 1.89 g·cm−3, 95.8% of theoretical maximum density) as the output end charges, and a groove channel charged by DIW and press-loading. This procedure increased the density of the booster charge in the groove channels to 1.890 g·cm−3, effectively improved the consistency of the charge density between the groove channels and the output ends and lowered the initiation synchronicity error of the network to 62 ns. The network can initiate a jetting projectile charge (JPC) with good shape and small lateral offset, implying that the network initiation capability and synchronization meet the operational requirements of JPC shaped charges.
EN
This study presented a self-designed prompt gamma neutron activation analysis (PGNAA) model and used Fluka simulation to simulate the heavy metals (Mn, Cu, Hg, Ni, Cr, Pb) in soil samples. The relationship between the prompt gamma-ray yield of each heavy metal and soil thickness, content of heavy metals in the soil, and source distance was obtained. Simulation results show that the prompt gamma-ray yield of each heavy metal increases with the increase in soil thickness and reaches saturation at 18 cm. The greater the proportion of heavy metals in the soil, the greater the prompt gamma-ray yield. The highest content is approximately 3%, and the change in distance between the neutron source and soil sample does not affect the prompt gamma-ray yield of heavy metals.
EN
Pure MCM-41 anchored benzene sulphonic acid (BSA/MCM-41), an efficient heterogeneous catalyst, was prepared for the synthesis of CL-20 from TAIW. The prepared catalysts were fully characterized by FTIR, XRD, TEM, TG, N2 adsorption techniques, elemental analysis and acidity tests. It was observed that the catalyst (BSA/MCM-41) retained the mesoporous structure like MCM-41, exhibited excellent thermal stability and high activity. Compared with a blank, the high catalytic activity promoted shorter reaction times by a factor of 3/5. In addition, this catalyst could be reused at least five times without significant loss of its catalytic potential. Moreover, the BSA/MCM-41 catalyst exhibited an optimal catalytic performance, with a high to excellent yield of CL-20 (92.5%) with a purity of 98.3%, under the optimum synthesis conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.