Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Comfort shoe-last design relies on the key points of last curvature. Traditional plantar pressure image segmentation methods are limited to their local and global minimization issues. In this work, an improved fully convolutional networks (FCN) employing SegNet (SegNet+FCN 8 s) is proposed. The algorithm design and operation are performed using the visual geometry group (VGG). The method has high efficiency for the segmentation in positive indices of global accuracy (0.8105), average accuracy (0.8015), and negative indices of average cross-ratio (0.6110) and boundary F1 index (0.6200). The research has potential applications in improving the comfort of shoes.
EN
Autonomous rehabilitation training for assisted patients with injured upper-limbs promotes the regenerative communication between muscle signals and brain consciousness. Surface electromyographic (sEMG) is a type of electrical signals of neuromuscular activity recorded by electrodes on the surface of the human body, which is widely applied for detecting gestures and stimuli reactions. Experimental results proved the importance of the sEMG signals for extracting such reactions, in which, the segmentation and classification of the sEMG are vital tasks. The objective of the present work is to segment and classify the sEMG signals of patients to assist the design of clinical rehabilitation devices based on the classification of sEMG signals. In the pre-processing stage, a dual-tone multi-frequency signaling is designed for signal coding; subsequently, the pre-processed sEMG signal is transformed by the Fast Fourier Transfer. Afterward, a time-series frequency analysisis performed by applyingHiddenMarkov Models.A basic traditional longshort- term memory (LSTM) model is addressed for waveform-based classification to be compared to the proposed improved deep BP (back-propagation)–LSTM for sEMG signal classification. Seventeen performance features are selected for evaluating the proposed multi-classification, deep learning model for classifying six actions, namely moving gesture of grip, slowly moving, flexor, straight lift, stretch, and up-high lift; which were proposed by rehabilitation physician. The experiment results indicated the superiority of the proposed method compared to other well-known classifiers, such as the neural network, support vector machine, decision trees, Bayes inference, and recurrent neural network. The proposed deep BP–LSTM network achieved 92% accuracy, 89% specificity, 91% precision, and 96% F1-score, in the multi-classification of the sEMG signals.
EN
Brain tumor is one of the harsh diseases among human community and is usually diagnosed with medical imaging procedures. Computed-Tomography (CT) and Magnetic-Resonance- Image (MRI) are the regularly used non-invasive methods to acquire brain abnormalities for medical study. Due to its importance, a significant quantity of image assessment and decision-making procedures exist in literature. This article proposes a two-stage image assessment tool to examine brain MR images acquired using the Flair and DW modalities. The combination of the Social-Group-Optimization (SGO) and Shannon's-Entropy (SE) supported multi-thresholding is implemented to pre-processing the input images. The image post-processing includes several procedures, such as Active Contour (AC), Watershed and region-growing segmentation, to extract the tumor section. Finally, a classifier system is implemented using ANFIS to categorize the tumor under analysis into benign and malignant. Experimental investigation was executed using benchmark datasets, like ISLES and BRATS, and also clinical MR images obtained with Flair/DW modality. The outcome of this study confirms that AC offers enhanced results compared with other segmentation.
EN
Diabetes mellitus is a clinical syndrome caused by the interaction of genetic and environmental factors. The change of plantar pressure in diabetic patients is one of the important reasons for the occurrence of diabetic foot. The abnormal increase of plantar pressure is a predictor of the common occurrence of foot ulcers. The feature extraction of plantar pressure distribution will be beneficial to the design and manufacture of diabetic shoes that will be beneficial for early protection of diabetes mellitus patients. In this research, texture-based features of the angular second moment (ASM), moment of inertia (MI), inverse difference monument (IDM), and entropy (E) have been selected and fused by using the updown algorithm. The fused features are normalized to predict comfort plantar pressure imaging dataset using an improved fuzzy hidden Markov model (FHMM). In FHMM, type-I fuzzy set is proposed and fuzzy Baum–Welch algorithm is also applied to estimate the next features. The results are discussed, and by comparing with other back–forward algorithms and different fusion operations in FHMM. Improved HMMs with up–down fusion using type-I fuzzy definition performs high effectiveness in prediction comfort plantar pressure distribution in an image dataset with an accuracy of 82.2% and the research will be applied to the shoe-last personalized customization in the industry.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.