Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Research on acoustical hoods used in industry has been widely discussed; however, the assessment of shape optimization on space-constrained close-fitting acoustic hoods by adjusting design parameters has been neglected. Moreover, the acoustical performance for a one-layer acoustic hood used in a high intensity environment seems to be insufficient. Therefore, an assessment of an optimally shaped acoustical hood with two layers will be proposed. In this paper, a numerical case for depressing the noise level of a piece of equipment by optimally designing a shaped two-layer close-fitting acoustic hood under a constrained space will be introduced. Furthermore, to optimally search for a better designed set for the multi-layer acoustical hood, an artificial immune method (AIM) has been adopted as well. Consequently, this paper provides a quick and effective method to reduce equipment noise by optimally designing a shaped multi- layer close-fitting acoustic hood via the AIM searching technique.
EN
Noise control is essential in an enclosed machine room where the noise level has to comply with the occupational safety and health act. In order to overcome a pure tone noise with a high peak value that is harmful to human hearing, a traditional reactive muffler has been used. However, the traditional method for designing a reactive muffler has proven to be time-consuming and insufficient. In order to efficiently reduce the peak noise level, interest in shape optimization of a Helmholtz muffler is coming to the forefront. Helmholtz mufflers that deal with a pure tone have been adequately researched. However, the shape optimization of multi-chamber Helmholtz mufflers that deal with a broadband noise hybridized with multiple tones within a constrained space has been mostly ignored. Therefore, this study analyzes the sound transmission loss (STL) and the best optimized design for a hybrid Helmholtz muffler under a space- constrained situation. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler is presented. Two numerical cases for eliminating one/two tone noises emitted from a machine room using six kinds of mufflers (muffler AF) is also introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. Before the SA operation can be carried out, the accuracy of the mathematical model has been checked using the experimental data. Eliminating a broadband noise hybridized with a pure tone (130 Hz) in Case I reveals that muffler C composed of a one- chamber Helmholtz Resonator and a one-chamber dissipative element has a noise reduction of 54.9 (dB). Moreover, as indicated in Case II, muffler F, a two-chamber Helmholtz Resonator and a one-chamber dissipative element, has a noise reduction of 69.7 (dB). Obviously, the peak values of the pure tones in Case I and Case II are efficiently reduced after the muffler is added. Consequently, a successful approach in eliminating a broadband noise hybridized with multiple tones using optimally shaped hybrid Helmholtz mufflers and a simulated annealing method within a constrained space is demonstrated.
EN
Recently, there has been research on high frequency dissipative mufflers. However, research on shape optimization of hybrid mufflers that reduce broadband noise within a constrained space is sparse. In this paper, a hybrid muffler composed of a dissipative muffler and a reactive muffler within a constrained space is assessed. Using the eigenvalues and eigenfunctions, a coupling wave equation for the perforated dissipative chamber is simplified into a four-pole matrix form. To efficiently find the optimal shape within a constrained space, a four-pole matrix system used to evaluate the acoustical performance of the sound transmission loss (STL) is eval- uated using a genetic algorithm (GA). A numerical case for eliminating a broadband venting noise is also introduced. To verify the reliability of a GA optimization, optimal noise abatements for two pure tones (500 Hz and 800 Hz) are exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models has been checked using experimental data. Results indicate that the maximal STL is precisely located at the desired target tone. The optimal result of case studies for eliminating broadband noise also reveals that the overall sound power level (SWL) of the hybrid muffler can be reduced from 138.9 dB(A) to 84.5 dB(A), which is superior to other mufflers (a one-chamber dissipative and a one-chamber reactive muffler). Consequently, a successful approach used for the optimal design of the hybrid mufflers within a constrained space has been demonstrated.
EN
Shape optimization on mufflers within a limited space volume is essential for industry, where the equipment layout is occasionally tight and the available space for a muffler is limited for maintenance and operation purposes. To proficiently enhance the acoustical performance within a constrained space, the selection of an appropriate acoustical mechanism and optimizer becomes crucial. A multi-chamber side muffler hybridized with reverse-flow ducts which can visibly increase the acoustical performance is rarely addressed; therefore, the main purpose of this paper is to numerically analyze and maximize the acoustical performance of this muffler within a limited space. In this paper, the four-pole system matrix for evaluating the acoustic performance – sound transmission loss (STL) – is derived by using a decoupled numerical method. Moreover, a simulated annealing (SA) algorithm, a robust scheme in searching for the global optimum by imitating the softening process of metal, has been used during the optimization process. Before dealing with a broadband noise, the STL’s maximization with respect to a one-tone noise is introduced for the reliability check on the SA method. Moreover, the accuracy check of the mathematical models with respect to various acoustical elements is performed. The optimal result in eliminating broadband noise reveals that the multi-chamber muffler with reverse-flow perforated ducts is excellent for noise reduction. Consequently, the approach used for the optimal design of the noise elimination proposed in this study is easy and effective.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.