Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The next generation healthcare systems will be based on the cloud connected wireless biomedical wearables. The key performance indicators of such systems are the compression, computational efficiency, transmission and power effectiveness with precision. The electrocardiogram (ECG) signals processing based novel technique is presented for the diagnosis of arrhythmia. It employs a novel mix of the Level-Crossing Sampling (LCS), Enhanced Activity Selection (EAS) based QRS complex selection, multirate processing, Wavelet Decomposition (WD), Metaheuristic Optimization (MO), and machine learning. The MIT-BIH dataset is used for experimentation. Dataset contains 5 classes namely, ‘‘Atrial premature contraction”, ‘‘premature ventricular contraction”, ‘‘right bundle branch block”, ‘‘left bundle branch block” and ‘‘normal sinus”. For each class, 450 cardiac pulses are collected from 3 different subjects. The performance of Marine Predators Algorithm (MPA) and Artificial Butterfly Optimization Algorithm (ABOA) is investigated for features selection. The selected features sets are passed to classifiers that use machine learning for an automated diagnosis. The performance is tested by using multiple evaluation metrics while following the 10-fold cross validation (10-CV). The LCS and EAS results in a 4.04-times diminishing in the average count of collected samples. The multirate processing lead to a more than 7-times computational effectiveness over the conventional fix-rate counter parts. The respective dimension reduction ratios and classification accuracies, for the MPA and ABOA algorithms, are 29.59-times & 22.19-times and 98.38% & 98.86%.
EN
The excessive drinking of alcohol can disrupt the neural system. This can be observed by properly analysing the Electroencephalogram (EEG) signals. However, the EEG is a signal of complex nature. Therefore, an accurate categorization between alcoholic (A) and nonalcoholic (NA) subjects, while using a short time EEG recording, is a challenging task. In this paper a novel hybridization of the oscillatory modes decomposition, features mining based on the Second Order Difference Plots (SODPs) of oscillatory modes, and machine learning algorithms is devised for an effective identification of alcoholism. The Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD) are used to respectively decompose the considered EEG signals in Intrinsic Mode Functions (IMFs) and Modes. Onward, the SODPs, derived from first six IMFs and Modes, are considered. Features of SODPs are mined. To reduce the dimension of features set and computational complexity of the classification model, the pertinent features selection is made on the basis of Wilcoxon statistical test. Three features with p-values (p) of < 0.05 are selected from each intended SODP and these are the Central Tendency Measure (CTM), area and mean. These features are used for the discrimination between A and NA classes. In order to determine a suitable EEG signal segment length for the intended application, experiments are performed by considering features extracted from three different length time windows. The classification is carried out by using the Least Square Support Vector Machine (LS-SVM), Multilayer perceptron neural network (MLPNN), K-Nearest Neighbour (KNN) and Random Forest (RF) algorithms. The applicability is tested by using the UCI-KDD EEG dataset. The results are noteworthy for MLPNN with 99.89% and 99.45% accuracies for EMD and VMD respectively for 8-second window.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.