This paper presents an estimation algorithm designed for tracking aerial ballistic objects using measurements from an electro-optical tracking system. Building upon our previous research, which focused on estimating the trajectory and flight parameters of an unguided short-range ballistic missile with motion constrained to two dimensions, this study introduces a more advanced and practical solution. The new approach uses a flight dynamics model formulated in a three-dimensional coordinate system. Unlike the previously developed algorithm, the one described in this paper accurately determines the object’s location within a geographically oriented horizontal reference frame. It also eliminates the need for prior knowledge of the shooting direction, which would be challenging to establish in practice, and more realistically models the influence of wind on the object’s motion in three dimensions. The paper includes the mathematical model of the tracking system, the extended Kalman filter used for estimating the ballistic object’s position and other flight parameters as well as simulation results for the proposed system.
In this paper, we present the in-house hardware and software platform allowing to perform the demonstrations of the design and operation of scanning tunneling microscope (STM) and derivative diagnostic techniques, enabling the determination of the properties of the surface at the nanoscale. The main advantage of the described setup is an open architecture, which is essential in terms of providing full insight into certain aspects of the construction and the ways the measurements are performed. Due to the modular design of the platform, students can excel in their competencies within various forms of learning activity, including basic training classes and diploma works. The described solution is a unique setup that was developed using the experience of the researchers at the Department of Nanometrology, Wrocław University of Science and Technology.
PL
W pracy przedstawiamy platformę edukacyjnego skaningowego mikroskopu tunelowego pozwalającego na badania powierzchni w skali nanometrycznej. Zasadniczą zaletą zaprojektowanej konstrukcji jest jej otwarta architektura pozwalająca na prowadzenie różnorodnych eksperymentów zarówno dydaktycznych jak i wysokospecjalizowanych prac naukowych. Przedstawiony system został zaprojektowany w ramach prac dyplomowych i doktorskich w Katedrze Nanometrologii Wydziału Elektroniki, Fotoniki i Mikrosystemów Politechniki Wrocławskiej.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.