Nowadays, diversified companies use security systems based on cameras to increase safety of their enterprise. However, when the camera observes multiple people, it is hard for humans to directly observe each of them. In the literature, there are multiple computer vision-based approaches that automatically detect person identity and the way he is moving. Moreover, there are approaches that identify people across multiple cameras (reidentification). It is crucial, especially in the crowded places. By these algorithms we can detect people whose behavior is strange. Diversified approaches can be easily found in the literature and online-available repositories. The work, presented in this paper, can be divided into three main parts: literature review, selected algorithms implementation and results comparison. We have to claim that each solution was implemented in Python programming language with sufficient libraries. This technology was selected due to its efficiency and simplicity. Results of the conducted experiments have shown that it is clearly possible to detect people’s movement and observe their identities even in crowded places.
PL
Współcześnie w wielu miejscach publicznych oraz obszarach zajmowanych przez zróżnicowane firmy możemy zauważy systemy bezpieczeństwa bazujące na kamerach. Jednakże bardzo ciężko jest pojedynczemu operatorowi obserwować każdą osobę która pojawi się na obrazie. W tym celu powstały algorytmy bazujące na metodyce Computer Vision, które mają na celu wykrycie nie tylko trasy poruszania się każdej osoby ale również ocenę jej tożsamości. Co więcej tego typu rozwiązania mogą być bardzo przydatne w zatłoczonych miejscach, gdzie niezwykle ważne jest wykrycie niestandardowego zachowania poszczególnych osób. W literaturze oraz bazach dostępnych online możemy znaleźć zróżnicowane podejścia do rzeczonego problemu. W ramach naszej pracy porównujemy kilka z nich. Każde z wybranych rozwiązań zostało zaimplementowane przy użyciu języka Python i bibliotek dostępnych w ramach rzeczonego języka. To środowisko zostało wybrane ze względu na jego wydajność oraz prostotę pisania kodu. Wyniki, które uzyskaliśmy wskazują na to, że aktualnie istniejące solucje mogą być używane do obserwacji trasy poszczególnych osób nawet w zatłoczonych miejscach.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.