Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The thermal instability of a couple-stress Rivlin-Ericksen ferromagnetic fluid with varying gravity field, suspended particles, rotation and magnetic field flowing through a porous medium is investigated. The dispersion relation has been developed and solved analytically using the normal mode approach and linear stability theory. The effect of suspended particles, rotation, couple stress, permeability and magnetic field on the fluid layer has been investigated. For stationary conventions, it is found that suspended particles always have a destabilizing effect for λ>0 and a stabilizing effect for λ<0 and couple-stress, magnetic field and permeability of the medium have a stabilizing effect on the thermal instability under certain conditions. In the absence of the rotation couple-stress has a stabilizing effect if λ >0 and a destabilizing effect if λ<0. Rotation has a stabilizing effect if λ >0 and a destabilizing effect if λ<0. In the absence of rotation permeability has a stabilizing effect if λ<0 and a destabilizing effect if λ>0. Magnetisation always has a stabilizing effect ( λ>0 or λ<0).
EN
Thin films of non-stoichiometric indium antimonide (In0:66Sb0:34) have been deposited by electron beam evaporation technique on glass substrates at different substrate temperatures, (300-473 K). The films have polycrystalline nature with zinc blende structure. The decrease in electrical resistivity with increasing temperature shows semiconducting behavior. Hall measurements indicate that the films are of n-type. Optical transmission spectra of as deposited thin films have been measured at different substrate temperatures. All the electrical parameters i.e. electron mobility (m), carrier concentration (n), resistivity (r), activation energy and band gap (Eg) have been found to be temperature dependent. Suitable explanations are given in the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.