Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main goal of robot path planning is to design an optimal path for a robot to navigate from its starting point to its goal while avoiding obstacles and optimizing certain criteria. A novel method using marine predator algorithm which is used in the field of robot path planning is presented. The proposed method has two steps. First step is to build a mathematical model of path planning while second step is optimization process using marine predator algorithm. Simulation results show that the proposed method works well and has good performance in different situations. Therefore, this method is an effective method for robot path planning and related applications.
EN
Ancient Chinese embroidery is an important intangible part of the cultural heritage of mankind. Its colours and contours are a major source of oriental inspiration and design elements for designers today. This study presents an effective intelligent recognition of colour and contour based on K-means++ clustering and the Canny operator for colour and contour application of ancient Chinese embroidery images and for digital inheritance and innovation. First, digital cameras and portable scanners were used in embroidery image acquisition. Second, colour level adjustment, sharpening and smoothing were specially added to the preprocessing, because of the ancient embroidery age or colour errors caused by the shooting angle. Third, K-means++ clustering was used for colour clustering. Fourth, the Canny operator was used for contour detection. After the addition of colour level adjustment and sharpening in the preprocessing, the colours and contours could be acquired accurately and more effectively from embroidery images and be read and edited independently.
EN
Numerical simulations of fluid‒structure interaction (FSI) on an elastic foil heaving with constant amplitude in freestream flow are carried out at a low Reynolds number of 20,000. The commercial software STAR-CCM+ is employed to solve the flow field and the large-scale passive deformation of the structure. The results show that introducing a certain degree of flexibility significantly improves the thrust and efficiency of the foil. For each Strouhal number St considered, an optimal flexibility exists for thrust; however, the propulsive efficiency keeps increasing with the increase in flexibility. The visualisation of the vorticity fields elucidates the improvement of the propulsive characteristics by flexibility. Furthermore, the mechanism of thrust generation is discussed by comparing the time-varying thrust coefficient and vortex structure in the wake for both rigid and elastic foils. Finally, in addition to sinusoidal motions, we also consider the effect of non-sinusoidal trajectories defined by flattening parameter S on the propulsive characteristics for both rigid and elastic foils. The non-sinusoidal trajectories defined by S=2 are associated with the maximum thrust, and the highest values of propulsive efficiency are obtained with S=0.5 among the cases considered in this work.
EN
A bulbous bow is a typical ship structure. Due to the influence of the bulbous bow, complex flow separation and gas capture phenomena may appear during the water entry of ship-like sections. In this paper, experimental and numerical studies on the water entry of a ship-like section with an obvious bulbous bow are carried out. Two thin plates are installed at both ends of the test model to ensure that the flow field during the impact process is approximately twodimensional. The free-fall drop test is carried out in the test rig equipped with guide rails. By changing drop heights, impact pressure on the model surface with different initial impact velocities is measured. A numerical model for simulating the water entry of the ship-like section is established by using the Computational Fluid Dynamics (CFD) method, based on the Navier-Stokes equations. Reasonable time steps and mesh size are determined by convergence analysis. Four different flow models are used in the numerical analysis. It is found that the K-Epsilon turbulence model can present the most reasonable numerical prediction by comparing numerical results with the experimental data. Furthermore, the influence of the bulbous bow on the impact loads is numerically studied by using the validated numerical model. It suggests that the bulbous bow has little effect on the impact force acting on the bow-flared area but, in the position near the bulbous bow, the pressure will be affected by the second slamming and the air cushion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.