Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of present study is establishing a simulation model to consider the performance of a water photovoltaic thermal system (PV/T) via the computational fluid dynamics method (CFD). The proposed model includes a water riser tube and an absorber plate to consider the conduction and convection heat transfer mechanisms. The simulation procee was carried out in the ANSYS FLUENT software. The effects of two different parameters on the efficiency and performance of the system were investigated numercically. The performance of the PV/T system versus the changes on the absorbed radiation on the plate and the inlet fluid temperature were analyzed. The temperature distribiution of different sections of the system was obtained. For validation of the presented method, a comparison study was carried out with the experimental results in the literature; satisfactory convergences were found between the measured data and the experimental results.
EN
In this article, an optimized PID controller for a fuel cell is introduced. It should be noted that we did not compute the PID controller’s coefficients based on trial-and-error method; instead, imperialist competitive algorithms have been considered. At first, the problem will be formulated as an optimization problem and solved by the mentioned algorithm, and optimized results will be obtained for PID coefficients. Then one of the important kinds of fuel cells, called proton exchange membrane fuel cell, is introduced. In order to control the voltage of this fuel cell during the changes in the charges, an optimal controller is introduced, based on the imperialist competitive algorithm. In order to apply this algorithm, the problem is written as an optimization problem which includes objectives and constraints. To achieve the most desirable controller, this algorithm is used for problem solving. Simulations confirm the better performance of proposed PID controller.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.