Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Optimal polar image sampling
EN
In this paper, a problem of efficient image sampling (deployment of image sensors) is considered. This problem is solved using techniques of two-dimensional quantization in polar coordinates, taking into account human visual system (HVS) and eye sensitivity function. The optimal radial compression function for polar quantization is derived. Optimization of the number of the phase levels for each amplitude level is done. Using optimal radial compression function and optimal number of phase levels for each amplitude level, optimal polar quantization is defined. Using deployment of quantization cells for the optimal polar quantization, deployment of image sensors is done, and therefore optimal polar image sampling is obtained. It is shown that our solution (the optimal polar sampling) has many advantages compared to presently used solutions, based on the log-polar sampling. The optimal polar sampling gives higher SNR (signal-to-noise ratio), compared to the log-polar sampling, for the same number of sensors. Also, the optimal polar sampling needs smaller number of sensors, to achieve the same SNR, compared to the log-polar sampling. Furthermore, with the optimal polar sampling, points in the image middle can be sampled, which is not valid for the log-polar sampling. This is very important since human eye is the most sensitive to these points, and therefore the optimal polar sampling gives better subjective quality.
2
Content available remote Design of a Hybrid Quantizer with Variable Length Code
EN
In this paper a new model for compression of Laplacian source is given. This model consists of hybrid quantizer whose output levels are coded with Golomb-Rice code. Hybrid quantizer is combination of uniform and nonuniform quantizer, and it can be considered as generalized quantizer, whose special cases are uniform and nonuniformquantizers. We propose new generalized optimal compression function for companding quantizers. Hybrid quantizer has better performances (smaller bit-rate and complexity for the same quality) than both uniform and nonuniformquantizers, because it joins their good characteristics. Also, hybrid quantizer allows great flexibility, because there are many combinations of number of levels in uniform part and in nonuniformpart, which give similar quality. Each of these combinations has different bit-rate and complexity, so we have freedom to choose combination which is the most appropriate for our application, in regard to quality, bit-rate and complexity. We do not have such freedom of choice when we use uniform or nonuniform quantizers. Until now, it has been thought that uniform quantizer is the most appropriate to use with lossless code, but in this paper we show that combination of hybrid quantizer and lossless code gives better performances. As lossless code we use Golomb-Rice code because it is especially suitable for Laplacian source since it gives average bit-rate very close to the entropy and it is easier for implementation than Huffman code. Golomb-Rice code is used in many modern compression standards. Our model can be used for compression of all signals with Laplacian distribution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.