Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We consider Helmholtz problems in two and three dimensions. The topological sensitivity of a given cost function J(uɛ) with respect to a small hole Bɛ around a given point x0ɛ ∈ Bɛ ⊂ Ω depends on various parameters, like the frequency k chosen or certain material parameters or even the shape parameters of the hole Bɛ. These parameters are either deliberately chosen in a certain range, as, e.g., the frequencies, or are known only up to some bounds. The problem arises as to whether one can obtain a uniform design using the topological gradient. We show that for 2-d and 3-d Helmholtz problems such a robust design is achievable.
EN
We study distributed optimal control problems, governed by space-time fractional parabolic equations (STFPEs) involving time-fractional Caputo derivatives and spatial fractional derivatives of Sturm-Liouville type. We first prove existence and uniqueness of solutions of STFPEs on an open bounded interval and study their regularity. Then we show existence and uniqueness of solutions to a quadratic distributed optimal control problem. We derive an adjoint problem using the right-Caputo derivative in time and provide optimality conditions for the control problem. Moreover, we propose a finite difference scheme to find the approximate solution of the considered optimal control problem. In the proposed scheme, the well-known L1 method has been used to approximate the time-fractional Caputo derivative, while the spatial derivative is approximated using the Grünwald-Letnikov formula. Finally, we demonstrate the accuracy and the performance of the proposed difference scheme via examples.
EN
In this article, we study the time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations and provide an in-depth well-posedness analysis. This is a continuation of our work, Krug et al. (2021) in that we now consider mixed two-point boundary value problems. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems on metric graphs with cycles. We design an iterative method based on the optimality systems that can be interpreted as a decomposition method for the original optimal control problem into virtual control problems on smaller time domains.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.