Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przeprowadzono badania próbek dwóch rodzajów skał: wapienia i złoża mineralnego, pochodzących z różnych kopalń Peru. Badania przeprowadzono w sztywnej maszynie wytrzymałościowej w warunkach jednoosiowego ściskania, przy sterowaniu kinematycznym prędkością odkształcenia podłużnego próbki równą 1.10-5 s-1. Sumarycznie przebadano 63 próbki (26 próbek wapienia i 37 próbek złoża mineralnego) o smukłości 2. Wynikiem badań każdej próbki była całkowita charakterystyka naprężeniowo-odkształceniowa. Skłonność skał do tąpań określono na podstawie różnych wskaźników, obliczonych według znanych wzorów [11], uwzględniających przedkrytyczne i pokrytyczne własności skał oraz energie właściwe w poszczególnych zakresach odkształcenia podłużnego próbki. Wszystkie stosowane wskaźniki skłonności do tąpań świadczą o dużej lub bardzo dużej skłonności badanych skał do tąpań.
EN
Samples of two kinds rocks: limestone and mineral deposit from different mines of Peru were investigated in a stiff testing machine in conditions of a uniaxial compression at kinematic steering by the rate of sample longitudinal strain equal to 1.10-5 s-1. In general 63 samples (26 limestone samples and 37 mineral deposit samples) of slenderness equal to 2 were investigated. The complete stress-strain characteristic was the result of each sample test. The rock susceptibility to bumps was determined on the basis of different indexes, calculated according to the known formulae [11] in which the pre- and post-critical properties of rocks as well as the specific energies in the particular ranges of sample longitudinal strain were taken into consideration. The analysis of all applied indexes of susceptibility to bumps has proved that the investigated rocks are highly and very highly susceptible to bumps.
PL
Przeprowadzono badania eksperymentalne nad własnościami mechanicznymi i akustycznymi typowych skał karbońskich podczas jednoosiowego i trójosiowego ściskania. Próbki skalne ściskane były w sztywnej maszynie wytrzymałościowej MTS-810 New. W przypadku trójosiowego ściskania próbkę umieszczano w komorze ciśnieniowej 70 MPa. Parametrami eksperymentu były prędkość odkształcenia podłużnego próbki skalnej o wartości rzędu 10/-4 i 10/-2 s/-1 oraz ciśnienie okólne o wartości p = 0, 10, 20, 30 i 50 MPa. Wyniki pomiarowe przedstawiają wykresy całego procesu ściskania próbki i rejestracji emisji akustycznej. W niniejszej pracy przedstawiono wyniki uzyskane z badań piaskowca drobnoziarnistego i węgla. Załączono wykresy uzyskane w jednoosiowym ściskaniu próbek skalnych, przy zastosowaniu dwóch różnych prędkości odkształcenia (10/-4 i 10/-2 s/-1) dla piaskowca i węgla, oraz wykresy trójosiowego ściskania przy dwóch różnych prędkościach odkształcenia dla piaskowca i węgla. Wykazano, że parametry charakteryzujące emisję akustyczną (liczba i amplituda impulsów) oraz ich rozkład względem charakterystyki naprężeniowo-odkształceniowej dla każdego typu litologicznego skały zależą od parametrów eksperymentu. Z przeprowadzonych badań wynika, że zjawiska akustyczne występujące podczas ściskania próbek skalnych mają inny przebieg w piaskowcu (w skałach płonnych) i w węglu. Analiza otrzymanych wyników wykazała, że na aktywność akustyczną mają wpływ zarówno ciśnienie okólne, jak i prędkość odkształcenia próbki. Wzrost tych parametrów wpływa na wzrost skumulowanej liczby impulsów w piaskowcu i na zmniejszanie się skumulowanej liczby impulsów w węglu.
EN
Experimental investigation on rock mechanical and acoustic properties during the uniaxial and conventional triaxial compression has been conducted. The typical Carboniferous rock samples collected from the Upper Silesian Coal Basin were tested. The rock samples of diameter 30 mm and height 60 mm were compressed in a stiff testing machine. In triaxial compression a 70 MPa pressure chamber was used. The parameters of experiments were the rate of longitudinal strain rate of samples (10/-4 and 10/-2 s/-1) and the confining pressure (0, 10, 20, 30, 50 MPa). The acoustic emission was registered by a Bruel and Kjaer device. The piezoelectric transducers were used for converting vibrations caused by fracture process during the uniaxial compression and triaxial compression. The output voltage of these transducers was proportional to the acceleration of vibrations. The results of measurements are shown in diagram of rock compression in a stiff testing machine and on a diagram of acoustic emission registration during the complete process of compression and failure. The results obtained from the investigation of fine-grained sandstone and coal are presented in this work. For each experiment the cumulated value of impulses and the energy expressed by a sum of squared amplitudes were determined. Those values were related to the strain of a sample at the assumption that 100% of strain corresponds to the value of critical load (pressure). It was shown that the parameters of acoustic emission (the number and amplitude of registered impulses) and their distribution in relation to the stress-strain characteristic depend on the parameters of experiment (strain rate and confining pressure) as well as on the type of the rock. The frequency analysis was conducted for the chosen impulses of the cumulated activity diagram, referred to the stress-strain characteristic. The values of the obtained magnitudes: amplitude of spectrum, dominant frequency and time of impulse duration are presented for sandstone and coal samples correspondingly in tables. The analysis of the obtained results has shown that the increase in strain rate and in confining pressure influence the increase of acoustic parameter in sandstone and on the contrary, the decrease of this parameter in coal. It was observed that the influence of strain rate on the investigated acoustic magnitudes is greater then that of the confining pressure.
EN
Triaxial compression tests in a stiff testing machine at a confining pressure of 0-70 MPa were performed on Carboniferous rock samples collected from the Upper Silesian Coal Basin. The results showed that the post- critical failures of waste rocks were congruent with smooth curves; post-failure behaviour of coal, however, were characterised by a stick-slip (Fig. I). The normal and shear stresses at the sample slip piane of a known slope were calculated for the determined values of critical stress and residual stress in a uniaxial state of stress, and for a given confining pressure. The coefficients of maximum and residual frictions were also calculated (Tabies 1-5). The obtained results, shown in Figs. 6 and 7, were compared with the Byerlee law, which describes the frictional shear strength. At high values of confining pressure the frictional shear strength can reach the value of the fracture strength. Then the transition from brittle fracture to ductile flow takes place. Aknowledge of the conditions in which stick-slip occurs has a practical meaning with regard to the prediction of mining tremors.
PL
Pokrytyczne niszczenie próbek skalnych w warunkach konwencjonalnego trójosiowego ściskania zależy od wartości ciśnienia bocznego (okólnego) symulującego głębokość zalegania skały. W badaniach laboratoryjnych pokrytyczne niszczenie próbki skalnej przedstawione jest opadającą częścią charakterystyki naprężeniowo-odkształceniowej, na podstawie której określa się moduł spadku (osłabienia) i naprężenie resztkowe. Wieloletnie badania nad własnościami typowych skał karbońskich Górnośląskiego Zagłębia Węglowego wykazały, że kształt pokrytycznej charakterystyki znacznie różni się w przypadku skał płonnych (zlepieniec, piaskowce średnio- i gruboziarniste, mułowiec, iłowiec) i węgli (półbłyszczący, matowy). Dla skał płonnych charakterystyka w sposób gładki opada do naprężenia resztkowego, natomiast dla węgla, przy wyższych ciśnieniach okólnych, występuje tzw. poślizg przerywany ("stick-slip") charakteryzujący się cyklicznymi spadkami i wzrostami naprężenia (Sanetra, 1994; Krzysztoń et al., 1998,2002). Na rysunku l przedstawiono wybrane wyniki badań uzyskane dla piaskowca i węgla przy różnych ciśnieniach okólnych w przedziale 0-70 MPa. Ze studiów literatury wynika, że poślizg przerywany jest obserwowany w badaniach różnych typów skał w warunkach działania wysokich ciśnień okólnych (Brace i Byerlee, 1966; Byerlee, 1967, 1975; Byerlee i Brace, 1968; Shimada, 2000). Na rysunku 2 przedstawiono za Patersonem (1978) przykłady. Efekt poślizgu przerywanego jest przedmiotem zainteresowania wielu badaczy gdyż uważa się, że może być on przyczyną trzęsień ziemi (Brace i Byerlee, 1966; Byerlee i Brace, 1968; Brace, 1972) i wstrząsów górniczych (Gibowicz, 1989; Dyskin et al., 1998). Przyczyną pojawiania się poślizgu przerywanego jest zmiana oporu tarcia wzdłuż powierzchni poślizgu. Tarcie między powierzchniami skalnymi zależy od szorstkości powierzchni i od naprężenia normalnego do powierzchni poślizgu. W rozdziale 2 opisano typowy eksperyment dla określenia siły tarcia w skałach, na podstawie którego uzyskuje się wykres siły tarcia jako funkcji przemieszczenia (Byerlee, 1978; Earthquake Hazards Program, 2002). Na wykresie wyróżniono początkową, maksymalną i resztkową siłę tarcia (rys. 4). Współczynnik tarcia określany jest według wzoru: [...], gdzie T jest naprężeniem stycznym a [...] naprężeniem normalnym, które działają w płaszczyźnie ścinania. Przy określaniu współczynnika tarcia należy rozróżnić wartości współczynnika wyznaczone dla początkowej, maksymalnej i resztkowej siły tarcia (Byerlee, 1978). Badania eksperymentalne prowadzone dla różnych typów skał wykazały, że dla przedziału naprężenia normalnego [...] MPa zależność między naprężeniem ścinającym a naprężeniem normalnym przedstawia linia prosta o równaniu: [...] (Byerlee, 1978). Zależność tę zastosowano przy określaniu współczynnika tarcia dla początkowej i maksymalnej siły tarcia różnych rodzajów skał. Dla początkowej siły tarcia uzyskano duże rozrzuty punktów eksperymentalnych względem przyjętej linii prostej, co uzasadniano trudnością określania punktu występowania początkowej siły tarcia (punkt C na rys. 4). Natomiast dla maksymalnej siły tarcia prosta o równaniu: [...] dobrze aproksymuje wyniki badań eksperymentalnych, przeprowadzonych dla różnych rodzajów skał (rys. 5). Badania własne dotyczyły wyznaczania współczynników tarcia dla maksymalnej i resztkowej siły tarcia. W tym celu wykorzystano wyniki badań nad własnościami wytrzymałościowymi i odkształceni owymi typowych skał karbońskich GZW (piaskowce: średnio- i drobnoziarniste, iłowiec, węgle: półbłyszczący i matowy) uzyskane w ramach projektu badawczego KBN (Krzysztoń et al., 2002). Niektóre badania obejmowały również pomiar kątów nachylenia płaszczyzny ścinania próbek. Okazało się, że kąty ścinania badanych skał wzrastają wraz ze wzrostem ciśnienia okólnego (w przedziale od O do 50 MPa), przyjmując bliskie wartości dla poszczególnych typów skał. W związku z tym do obliczeń przyjęto taki sam kąt ścinania dla wszystkich badanych skał, zależny tylko od ciśnienia okólnego. Znając średnie wartości naprężenia krytycznego i resztkowego, wyznaczone dla 4-6 próbek badanej skały przy stosowanym ciśnieniu okólnym oraz kąt zniszczenia próbki skalnej, obliczono naprężenia normalne i styczne w płaszczyźnie ścinania oraz odpowiadające współczynniki tarcia zarówno w próbce zwięzłej (maksymalna siła tarcia), jak i spękanej (resztkowa siła tarcia). Wyniki obliczeń zestawiono w tablicach 1-5. Uzyskane wyniki naniesiono na rysunkach 6 i 7 i porównano z zależnością Byerlee'ego. Zarówno wytrzymałość na ściskanie kruchych skał, jak i wytrzymałość tarciowa (prawo Byerlee'ego dla maksymalnej siły tarcia) są funkcjami ciśnienia okólnego. Na podstawie studiów nad zagadnieniami pękania i tarcia ("ftacture and fiiction") przypomniano, że punkt przecięcia charakterystyki wytrzymałości na ścinanie badanej skały i tarciowej wytrzymałości określa naprężenie normalne (ciśnienie okólne), przy którym następuje przejście ze stanu kruchego w stan ciągliwy. Poznanie warunków występowania poślizgu przerywanego ma duże znaczenie praktyczne ze względu na możliwość przewidywania wstrząsów górniczych.
EN
A typical friction experiment for determination of the friction force between a sliding rider of mass m and a rigid flat is presented in the paper (Fig. 1). The dependence between the friction force and the rider displacement was determined on the basis of experiments (Fig. 2 - Byerlee, 1978). Three values of friction forces were distinguished: initial (C), maximai (D) and residual (G) force. It was observed that after reaching the maximal value of friction force the rider displacement could be either stable or jerky. The jerky type of movement is known as a stick-slip (Byerlee, 1966; Byerlee & Brace, 1968; Paterson, 1978). When normal and shear stresses at the sample slip plane are known, the coefficients of friction cor responding to the initial, maximal and residual friction force are determined. As evidenced by Byerlee (1978), the straight line T = 0.85 [...] approximates the results for a variety of rock types for [...] 200 MPa (Fig. 3). The triaxial compression tests in a stiff testing machine at a confining pressure of 0-70 MPa were performed on Carboniferous rock samples collected from the Upper Silesian Coal Basin. The results showed that the post critical failures of waste rocks were congruent with smooth curves; failures of coals, however, were characterized by a stick-slip (Sanetra, 1994; Krzysztoń et al., 1998; Sanetra, 2004 - Fig. 5). The normal and shear stresses at the sample slip plane of known slope were calculated for the determined values of critical stress and residual stress in a uniaxial state of stress, and for a given confining pressure. The coefficients of maximal and residual frictions were also calculated, e.g. Table l. The obtained results shown in Figs. 6 and 7 were compared with the Byerlee law. Basing on foreign literature, the conditions at which stick-slip occurs were described and the method for determining normal stress (confining pressure), at which the transition from stable sliding to stick-slip takes place, was presented.
PL
W pracy przedstawiono typowy eksperyment dla określenia siły tarcia pomiędzy przesuwającą się próbką o masie m a sztywnym podłożem (rys. I). Na podstawie przeprowadzonych eksperymentów uzyskano wykres przedstawiający zależność pomiędzy siłą tarcia a przemieszczeniem próbki (rys. 2 - Byerlee, 1978). Na wykresie wyróżniono trzy wartości siły tarcia: początkową, maksymalną i resztkową siłę tarcia. Po uzyskaniu maksymalnej wartości siły tarcia dalsze przemieszczenie próbki może zachodzić w sposób gładki lub w sposób szarpany, charakteryzujący drgania cierne (Byerlee, 1966; Brace i Byerlee, 1968; Paterson, 1978). Znając naprężenia normalne i styczne w płaszczyźnie poślizgu wyznacza się współczynnik tarcia odpowiadający początkowej, maksymalnej lub resztkowej sile tarcia. Byerlee wykazał, że dla maksymalnej siły tarcia prosta o równaniu, = 0,85 [...] dobrze aproksymuje wyniki badań eksperymentalnych przeprowadzonych dla różnych rodzajów skał, gdy [...] 200 MPa (rys.3). Drgania cierne są również obserwowane w badaniach trójosiowego ściskania skał prowadzonych w sztywnej maszynie wytrzymałościowej, przy zastosowaniu ciśnienia okólnego o dużej wartości (Byerlee, 1966, 1967; Byerlee i Brace, 1968; Byerlee, 1975; Paterson; 1978; Shimada, 2000). W Laboratorium Geomechaniki Górniczej Zakładu Tąpań i Mechaniki Górotworu Głównego Instytutu Górnictwa w Katowicach prowadzone są trójosiowe badania skał w sztywnej maszynie wytrzymałościowej MTS 810 NEW przy zastosowaniu komory ciśnieniowej 70 MPa. W latach 1999-2002 prowadzono programowe badania nad wpływem ciśnienia okólnego na własności naprężeniowo-odkształceniowe typowych skał karbońskich Górnośląskiego Zagłębia Węglowego. Niektóre badania uwzględniały również pomiar kątów nachylenia płaszczyzny zniszczenia w trójosiowym ściskaniu próbek skalnych przy zastosowaniu ciśnienia okólnego w zakresie 0+50 MPa (Krzysztoń i in., 2002). W niniejszej pracy wykorzystano uzyskane wyniki i obliczono naprężenia normalne i naprężenia styczne w płaszczyznach poślizgu próbek skalnych badanych typów skał. W obliczeniach uwzględniono naprężenie krytyczne w jednoosiowym stanie naprężenia charakteryzujące skałę zwięzłą i naprężenie resztkowe odpowiadające skale spękanej. Kąty ścinania próbek nieznacznie różniły się dla badanych typów skał i obliczenia przeprowadzono dla jednego kąta ścinania, zależnego od ciśnienia okólnego zmieniającego się w zakresie 5+50 MPa (p = 5,10,20,30,50 MPa). Znając wartości naprężenia normalnego i stycznego w płaszczyźnie ścinania wyznaczono współczynniki tarcia i kąty tarcia wewnętrznego dla maksymalnej i resztkowej siły tarcia. Obliczenia współczynników tarcia dla skały zwięzłej i skały spękanej przeprowadzono tabelarycznie (np. Tab. 1). Uzyskane zależności miedzy naprężeniem ścinającym i naprężeniem normalnym w płaszczyznach ścinania badanych próbek zwięzłych i spękanych zaznaczono odpowiednio na rysunkach 6 i 7. Na rysunkach tych przedstawiono linią ciągłą zależność Byerlee'a. Na ogół zależność Byerlee'a aproksymuje wyniki eksperymentalne dla skał .zwięzłych (maksymalna siła tarcia) natomiast określa z nadmiarem wyniki dla skały spękanej (resztkowa siła tarcia) gdy resztkowe naprężenia normalne są większe niż 40 MPa. Drgania cierne są niebezpieczne, bo mogą powodować trzęsienia ziemi lub wstrząsy górotworu. Na podstawie literatury zagranicznej podano warunki, w jakich występują drgania cierne i sposób określenia naprężenia normalnego (ciśnienia okólnego), przy którym następuje przejście od statecznego poślizgu do drgań ciernych.
EN
The results of triaxial compression of rock sampIes in a stiff testing machine using a 70 MPa pressure chamber are presented. Experiments were carried out at the constant rate of longitudinal strain of a sampIe (10-5. s-1) and at a constant confining pressure of O, 5, 10, 15, 20, 30, 50, 70 MPa. The sampIes of fine-grained sandstone, siltstone and coal, at atotal of 151 sampIes, were tested. For cach rock type 3 to 5 experiments were conducted at given confining pressure. The following rock properties: critical stress; critical strain, residual stress, residual strain and the modulus of softening were determined at different values of the confining pressure. The average values of thc determined magnitudes are listed in Table 1 and presented in the form of functional dependences in the graphs (Fig. 2 to 6). The angle of internal friction and cohesion were defined by three methods: the method of tangents to Mohr's circles, the method and the method of two tangents to the parabolic envelope of Mohr's circles. The obtained results are listed in Table 2. On the basis of the equation of Mohr's circles parabo!ic envelope, the angle of internal friction, being a function of normal stress, was determined for a compact rock in the pre-critical state and for a fractured rock in the post-critical state. The results of triaxial tests were applied for determining the rock maximum strength according to the Hoek-Brown criterion. The obtained envelopes of maximum strength were compared with the envelopes of Mohr's circles. Then the parameters occurring in Hoek-Brown's criterion (m, s) and the corresponding magnitudes resulting from Mohr's circles envelope (ep, c) were compared. In the conclusions, attention was paid to the increase in the modulus of softening in the low range values of confining pressure (O to 10MPa), and then to the decrease of this modulus with the increase of confining pressure in the range from 10 to 70 MPa. Attention should also be paid to the determination of the angle of internal friction and cohesion by the proposed method of tangents to the parabolic envelope of Mohr's circles (Sanetra 2002). According to this method, the angle of internal friction and cohesion can be determined in the whole range of normal stress, both for compact and fractured rocks.
PL
Przedstawiono wyniki badań trójosiowego ściskania próbek skalnych w sztywnej maszynie wytrzymałościowej przy zastosowaniu komory ciśnieniowej 70 MPa (rys. I ). Eksperyment prowadzono ze stałą prędkością odkształcenia podłużnego próbki wynoszącą 10sup><-5> . ssup<-I>. Stosowano 8 poziomów ciśnienia okólnego: O, 5, 10, 15, 20, 30, 50, 70 MPa. Badano próbki piaskowca drobnoziarnistego, iłowca i węgla o łącznej liczbie 151. Dla każdego rodzaju skały przeprowadzono 3-5 eksperymentów dla zadanego ciśnienia okólnego. Wyniki eksperymentalne uzyskiwano w postaci całkowitej charakterystyki naprężeniowo-odkształceniowej , z ezęścią wznoszącą i opadającą, na podstawie której określano następujące właściwości skał: naprężenie maksymalne zwane naprężeniem krytycznym, odkształcenie krytyczne odpowiadające naprężeniu krytycznemu, moduł odkształcenia podłużnego określany na podstawie stycznej do wznoszącej (przedkry­tycznej) części charakterystyki, naprŤżenie resztkowe przedstawiające minimalną wartość naprężenia w części opadającej (pokrytycznej) charakterystyki, odkształcenie resztkowe odpowiadające naprężeniu resztkowemu, moduł osłabienia określony na podstawie nachylenia stycznej do pokrytycznej części charakterystyki, wyznaczony jako tangens kąta ostrego pomiędzy styczną a osią odkształcenia. Średnic wartości określonych wielkości dla stosowanego ciśnienia okólnego zestawiono w tablicy I i przedstawiono w postaci zależności funkcyjnych na wykresach (rys. 2-6). Wyznaczono kąt tarcia wewnętrznego i spójność trzema metodami: metodą graficzną w układzie współrzędnych, metodą punktową, oraz metodą dwóch stycznych do parabolicznej obwiedni kół Mohra. Uzyskane wyniki zestawiono w tablicy 2. Mając określone równanie parabolicznej obwiedni kół Mohra wyznaczono kąt tarcia wewnętrznego jako funkcję naprężenia normalnego, zarówno dla skały zwięzłej w stanie przedkrytycznym, jak również dla skały spękanej występującej w stanie pokrytycznym (rys. 7a, b, c). Wyniki trójosiowych badań zastosowano do wyznaczenia wytrzymałości skał zwięzłych według kryterium Hoeka-Browna. Uzyskane obwiednie maksymalnej wytrzymałości (rys. 8a, b,e, d) porównano z obwiedniami kół Mohra (Sanetra, Szedel 2000; Sanetra 2002). Przeprowadzono analizę parametrów występujących w kryterium Hoeka-Browna: m, s i odpowiadających wielkości wynikających z obwiedni kół Mohra (tabl. 4). Na podstawie uzyskanych wyników sformułowano wnioski, które na ogół są zgodne z wynikami wcześniejszych badań (Kwaśniewski 1983, 1986; Tajduś 1990; Sanetra 1994a, b; Krzysztoń i in.1998): Wzrost ciśnienia okólnego powoduje wzrost naprężenia krytycznego, dkształcenia krytycznego, naprężenia resztkowego, odkształcenia resztkowego oraz na ogół zmniejszanie się modułu osłabienia. Ilościowa zmiana poszczególnych wielkości zależy od rodzaju skały i zakresu stosowanego ciśnienia okólnego. Na uwagę zasługuje znacznie większy wzrost naprężenia resztkowego niż naprężenia krytycznego wraz ze wzrostem ciśnienia okólnego. W zakresie niskich wartości ciśnienia okólnego (5-10 MPa) występuje wzrost modułu osłabienia poprzedzający ogólną tendencję dalszego zmniejszania się modułu. Wzrost modułu osłabienia (odkształcenia) w zakresie niskich wartości ciśnienia okólnego (5-10 MPa) względem wartości uzyskanej w jednoosiowym stanie naprężenia można uzasadniać "pamięcią" materiału skalnego o wzmocnieniu odkształcenia występującego w przedkrytycznej części charakterystyki.Kąt tarcia wewnętrznego zależy od rodzaju skały i zmniejsza się wraz ze wzrostem naprężenia normalnego. Kąt tarcia wewnętrznego skały spękanej jest nieznacznie mniejszy niż skały zwięzłej, natomiast spójność skały spękanej jest wielokrotnie mniejsza niż skały zwięzłej. Bezwymiarowe stałe m i s występujące w kryterium Hoeka-Browna są w przybliżeniu analogiczne odpowiednio do kąta tarcia wewnętrznego i spójności określanych w kryterium zniszczenia Coulomba-Mohra. Stała materiałowa m oraz kąt tarcia wewnętrznego dla skał o strukturze zwięzłej przyjmują znacznie wyższe wartości dla skał mocnych (piaskowiec drobnoziarnisty) niż dla skał słabych (iłowiec, węgiel). Stała materiałowa m dla skał o strukturze zniszczonej (spękanej) przyjmuje zbliżone do siebie wartości zarówno dla skał mocnych, jak i słabych. Spójność c oraz stała materiałowa s skał spękanych znacznie spada w stosunku do tych wartości dla skał zwięzłych (Hoek, Brown 1980; Kidybiński 1982). Analiza ilościowych zmian własności skał pod wpływem ciśnienia okólnego, wzrastającego w zakresie 0-70 MPa, pozwala na wyciągnięcie następujących ogólnych wniosków: spękane struktury skalne mogą spełniać warunek nośności dla określonych wartości ciśnienia okólnego i kąta tarcia wewnętrznego (Krzysztoń 2000); pokrytyczne właściwości skał zależą nie tylko od typu skały (piaskowiec, iłowiec, węgiel) ale również od struktury skały (piaskowiec nr 1 i nr 3); znajomość wartości kąta tarcia wewnętrznego i kohezji dla węgla i skał płonnych może mieć zastosowanie w określaniu wytrzymałości filarów węglowych przy uwzględnieniu warunków kontaktowych w układzie: strop-filar-spąg (Krzysztoń 2002); wzrost modułu osłabienia w zakresie niskich ciśnień okólnych, przejawiający "pamięć" materiału skalnego, świadczy o konieczności uwzględnienia efektów lepkich w konstytutywnym modelu pokrytycznej części charakterystyki naprężeniowo-odkształceniowej (Nawrocki, Mróz 1992).
PL
Dla określenia pokrytycznych własności skał w trójosiowym stanie naprężenia prowadzono badania w sztywnej maszynie wytrzymałościowej MTS-810 NEW z serwomechanizmem, przy zastosowaniu komory ciśnieniowej 70 MPa. Przeprowadzono kompleksowe badania dla próbek typowych skał karbońskich (piaskowce, mułowce, iłowce, węgle), zwięzłych i spękanych, o gładkiej i szorstkiej powierzchni spękań. W eksperymentach stosowano różne wartości ciśnienia okólnego w zakresie 0 do 70 MPa przy stałej prędkości odkształcenia podłużnego próbki skalnej, lub różne wartości prędkości odkształcenia w zakresie 10-5 do 10-1 s -1 przy stałym ciśnieniu okólnym. W wybranych eksperymentach prowadzona była rejestracja emisji sejsmoakustycznej. Tak szeroki zakres badań umożliwia przeprowadzenie analizy wyników w zastosowaniu do zagadnień górniczych na różnych głębokościach i do zjawisk o charakterze statycznym lub dynamicznym.
EN
Experimental tests in the stiff testing machine MTS 810 New at application of the pressure chamber 70 MPa were carried out for typical Carbon rocks (sandstones, mudstones, siltstones, coals). The compact and fractured rocks and the samples with fractures of smooth and rough surfaces were investigated. The parameters of experiments were confining pressure in the range 0 is to 70 MPa, or longitudinal strain rate in the range 10-5 is to 10-1 s-1. In the chosen experiments the acoustic emission was registered. This wide range of investigations enables the analysis of the results in the application to mining problems occurring at different depth and to phenomena of static and dynamic symptoms.
PL
W pracy przedstawiono wpływ skrępowania filara przez skały stropowe i spągowe na wytrzymałość filara. Warunek wytrzymałościowy Coulomba odniesiono do wytrzymałości pozornej [2], złożonej z wytrzymałości materiałowej i wytrzymałości wywołanej więzami. W takim ujęciu wytrzymałość na ścinanie jest sumą wytrzymałości kohezyjnej i wytrzymałości tarciowej wynikającej ze skrępowania powierzchni ścinania naprężeniem normalnym. Na podstawie konstrukcji koła Mohra wykazano, że naprężenie poziome można wyrazić w postaci przedstawiającej oddzielny wpływ zarówno naprężenia pionowego z czynnikiem krępującym filar Fl, jak i nieskrępowanej wytrzymałości ścinającej z czynnikiem F2 charakteryzującym własności fizykalne skał [4]. Przedstawiono również rozkład energii odkształcenia sprężystego w filarze w zależności od skrępowania filara [4]. Energia w jednoosiowym stanie naprężenia jest maksymalna i ulega zmniejszeniu w wyniku skrępowania. Różnice w wartościach energii odkształcenia sprężystego wzrastają wraz ze wzrostem liczby Poissona. Stąd dla dużej liczby Poissona skał filara przez skały stropowe i spągowe można przewidywać - w przypadku nagłego usunięcia skrępowania - duży efekt dynamiczny w postaci wyrzutu węgla.
EN
The influence of the coal pillar confinement by roof and floor rocks on the pillar strength is presented. The Coulomb failure condition is referred to the apparent strength composed of material strength and the strength caused by constraints [2]. In such a formulation the shearing strength is the sum of the cohesive strength and the frictional strength resulting from the shear surface confinement by the normal stress. The Mohr's circle construction was applied to the components of the primary state of stresses. It has been shown that the horizontal stress may be expressed in the form describing the separate influence of the vertical stress with the confinement factor F1 and the unconfined shear strength with the factor F2 characterizing the physical properties of rocks [4]. The distribution of the elastic strain energy in the pillars in dependence on pillar confinements has been shown [4]. This energy is maximal in the uniaxial stress and undergoes decreasing as a result of confinements. The decrease in the elastic strain energy value increases with the increase in confinements as well as in Poisson's ratio values. Hence for the high Poisson's ratio value of pillar rocks and for strong roof and floor confinements of pillar, high dynamic effects in the form of coal bursting can appear in the case of sudden removal of confinements.
PL
Energia wyzwolona przy szybkim wykonywaniu wyrobiska górniczego wywołuje drgania konturu wyrobiska i propagację fali naprężenia dynamicznego. Dla przypadku kawerny o kształcie kuli znajdującej się w górotworze, w którym panuje hydrostatyczny stan obciążenia określono rozkłady sprężystej energii odkształcenia objętościowego i postaciowego w różnych przedziałach czasu, odpowiadających różnym położeniom czoła fali naprężenia. Wytężenie górotworu obliczono według hipotez Hubera i Burzyńskiego. Pokazano, że energia odkształcenia objętościowego ma istotny wpływ na stopień wytężenia górotworu.
EN
The energy released at quick execution of an underground working causes a vibration of the working contour and a propagation of the dynamic stress wave. For the case of a spherical cavity in the hydrostatic state of stress the distributions of strain energy due to the change of volume and distortion energy around the considered spherical cavity were determined for different time intervals corresponding to different position of the stress wave front. The rock mass effort was calculated according to Huber's and Burzyński's hypotheses. It has been shown that the energy due to the change of volume has an essential influence on the rock mass effort.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.