Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this study is to explore the collision–attachment law of lepidolite, feldspar and quartz during their interaction with bubbles by particle settlement method and bubble rising method under the action of combined collector. In this study, HQ-330 and dodecylamine were used as combined collector to separate lepidolite, feldspar and quartz by flotation. It also aims to analyse the relationship between collision probability, attachment probability, formation time of three-phase contact line and flotation recovery and the main factors affecting the formation time of three-phase contact line. Experimental results show that when the pH is 7 and the combined collector dosage is 100 mg/L, the separation of lepidolite from feldspar and quartz can be achieved. In the particle settlement experiments, the correlation between collision probability and flotation recovery is low, the correlation between attachment probability and flotation recovery is positive. In the bubble rising experiments, the formation time of three-phase contact line (tTPC) is negatively correlated with flotation recovery, and the combined collector changes tTPC by changing drainage time.
EN
In this study, the synergistic depressive effect of polyaspartic acid (PASP) and zinc sulfate (ZnSO4) in the flotation separation of chalcopyrite from Cu-activated marmatite was investigated by micro-flotation experiments and ore sample flotation tests, and the possible depressive mechanism was proposed from contact angle measurements, fourier transform infrared (FT-IR) analysis, inductively coupled plasma (ICP) measurements and X-ray photoelectron spectroscopy (XPS) analysis. Microflotation tests indicated that the mixed depressant PASP/ZnSO4 (PZ) exerted strong depressive effect on Cu-activated marmatite in the pH range of 9~12, but it had little effect on chalcopyrite flotation. The ore sample flotation experiments indicated the PZ system decreased the grade of Zn in Cu concentrate by 4.18%, and the depressant consumption was reduced by more than a half. The results from contact angle measurement demonstrated that the hydrophobicity of Cu activated-marmatite surface was higher than that of chalcopyrite surface in presence of PZ. FT-IR analysis demonstrated the more intensive chemisorption of PZ on Cu-activated marmatite surface. ICP measurements showed that PASP had an excellent complexing ability with Cu2+ and Zn2+, which not only reduced the activation of Cu species, but also generated Zn-PASP complex on marmatite surface. XPS analysis indicated a stronger interaction between PZ and Cu-activated marmatite surface, and the depressant PZ may mainly react with Cu-activated marmatite surface through the copper atoms.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.