A proper graded ideal P of a commutative graded ring R is called graded weakly 1-absorbing primary if whenever x, y, z are nonunit homogeneous elements of R with 0≠xyz ∈ P , then either xy ∈ P or z is in the graded radical of P. In this article, we explore more results on graded weakly 1-absorbing primary ideals.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a group and R be a G-graded commutative ring with nonzero unity 1. In this article, we introduce the concept of graded weakly 1-absorbing primary ideals which is a generalization of graded 1-absorbing primary ideal. A proper graded ideal P of R is said to be a graded weakly 1-absorbing primary ideal of R if whenever nonunit elements x y z ∈ h(R), , such that 0 ≠ ∈ xyz ∈ P, then xy ∈ P or zn ∈ P , for some n ∈ N . Several properties of graded weakly 1-absorbing primary ideals are investigated.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a group with identity e, R be a G-graded commutative ring with a nonzero unity 1, I be a graded ideal of R, and M be a G-graded R-module. In this article, we introduce the concept of graded I-second submodules of M as a generalization of graded second submodules of M and achieve some relevant outcomes.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a group with identity e, R be a G-graded commutative ring with a nonzero unity 1 and M be a G-graded R-module. In this article, we introduce and study the concept of almost graded multiplication modules as a generalization of graded multiplication modules; a graded R-module M is said to be almost graded multiplication if whenever a ∈ h(R) satisfies AnnR (aM) = AnnR (M), then (0 :M a) = {0}. Also, we introduce and study the concept of almost graded comultiplication modules as a generalization of graded comultiplication modules; a graded R-module M is said to be almost graded comultiplication if whenever a ∈ h(R) satisfies AnnR (aM) = AnnR (M), then aM = M. We investigate several properties of these classes of graded modules.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.