Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The noise measuring of electric motors is already well known and understandable, but when the motor producer wants to measure the motor noise directly on the motor assembly line (as out-going inspection) then come several troubles which must be fixed. The most important is to eliminate the background noise – the sound pressure on the work shop can be over 80 dB somewhere so then is practically impossible to do a motor noise measuring. It is necessary to use a noise-box to reduce the background noise – see Fig.2. Next trouble can be the test results evaluation - especially in case of special "noise requirements" with strict acceptance criteria. Here we have to count also with additional disturbances caused for example by using of bearings from different manufacturers.
2
Content available BLDC motor control design in Matlab/Simulink
EN
The article describes the simple way of BLDC motor control development in the Simulink environment. This way of development is also called Model Based Design approach, which is nowadays rapidly gaining popularity. MBD should be very effective method for development time reduction and finds usage especially during fast prototyping phase. The simple BLDC motor controller has been created and presented in this paper. Because the Simulink itself cannot control any outside system or process itself, a real special software and hardware has to be connected to the personal computer. Described control algorithm has been developed for dSPACE environment with appropriate power and interface electronics. The sinusoidal control algorithms for low power sensor BLDC motor has been used.
EN
The position of the gravity centre of walking robot body is changed depending on individual legs position, velocity, acceleration and configuration of terrain during the movement. Dependencies of position, velocity and acceleration of legs may be determined from the kinematic and dynamic models of the robol. The influence of terrain must be compensated through sensor system. The design of robot sensor system for determination of its slope is presented in this contribution.
PL
Położenie środka ciężkości robota kroczącego zmienia się w zależności od położenia nóg, prędkości i przyspieszenia podczas ruchu oraz od ukształtowania terenu. Zależności położenia, prędkości i przyspieszenia mogą być wyznaczane na podstawie modeli robota: kinematycznego i dynamicznego. Wpływ podłoża musi być kompensowany przez układ czujników. W artykule przedstawiono projekt układu do określania odchylenia robota od pionu.
EN
The robot is able to make plane movements in the surroundings using a locomotive mechanism including planned interaction with the variable surrounding environment. The OMR III control system has been divided into three levels. The external subsystem represents the top level of control. The operator can control the robot through it in case of the artificial intelligence algorithms are not able to solve the given situation. The planning subsystem creates a higher level of control and it solves localisation of the mobile robot during global navigation. The lowest level of control consists of the control subsytem of locomotion. The individual levels are inter-connected into a distributed network. The sensorial subsystem consists of two functionally different groups of sensors. The internal sensors provide information about changes of inner conditions of the robot. The external sensors provide information about changes of the external environment of the robot.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.