The extraction of light rare earths (Pr and Nd) from chloride medium was investigated using a mixture of di(2-ethylhexyl) phosphoric acid (P204) and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272) in sulfonated kerosene. The P204+Cyanex272 system exerted a synergistic effect on the separation of light rare earths, and the separation coefficient was higher than when P204 and Cyanex272 were used as extractants alone. The separation coefficient of Pr and Nd in the extraction system reached 1.75 when the pH of the aqueous phase material solution was approximately 2.5, and 1.5 mol/L hydrochloric acid as a stripping agent effectively eluted the rare earth ions in the loaded organic phase. Combining the slope method, infrared spectroscopy, and nuclear magnetic resonance spectroscopy, we explored the mechanism of the extracted Nd and Pr into the organic phase complex, and finally entered the organic phase with Re(HA2)2B. The P-O-H bond and P=O bond in the extractant P204 and Cyanex272 formed a coordination bond with Re3+. Therefore, this extraction method also provides a reference for a more environmentally friendly and efficient procedure for separation and purification of light rare earth elements Pr and Nd.
Every year, the production of industrial phosphoric acid generates more than 100 Tg of phosphogypsum (PG), leading to significant environmental damage and the occupation of a vast amount of land space. The urgent need to explore applications for PG has become increasingly apparent. However, impurities such as organic substances, slime, phosphorite, and SiO2 reduce the whiteness of PG, making it difficult to utilize for high-value applications. To address this issue, this study employed a two-stage flotation process to remove the majority of impurities, including SiO2, organic substances, and fine slime adhered to the surface of PG particles. The raw PG sample was first sieved to remove some SiO2 particles. After flotation, sulfuric acid and tributyl phosphate were introduced to decompose the PG particles and remove the impurities wrapped inside. Following this flotation combined extraction process, the whiteness of the PG sample improved from 54.1% to 92.9%, meeting the requirements for building walls and filters.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.