Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy omówiono różne możliwości w zakresie zdalnego spawania przy użyciu robota chirurgicznego wyposażonego w kamerę cyfrową, stosowaną do obserwacji strefy spawania, a w szczególności trudności w wykrywaniu granic jeziorka spawalniczego. Różnicę w przetwarzaniu rzeczywistego obrazu przez mózg człowieka omówiono w porównaniu z obrazem w postaci filmu z kamery cyfrowej. Przedstawiono trzy modele rozpoznawania obrazu przez człowieka, z których jeden został już przebadany przez naukowców z Cambridge. Omówiono koncepcję topienia materiału podstawowego przez kontrolę jeziorka spawalniczego przy ciśnieniu niezjonizowanych gazów łukowych oraz pomiaru trzeciego wymiaru jeziorka spawalniczego i określenia głębokości wtopienia spoiny za pomocą urządzeń elektronicznych. Przedstawiono wymagane trajektorie ruchu wierzchołka elektrody, opierając się na fizyce łuku spawalniczego i technologii spawania, oraz trudności napotykane podczas szkoleń spawaczy. Przedstawiono podstawę neuronowego modelu mózgu wraz z modelem wektorowym sztucznej inteligencji.
EN
This paper discusses various challenges in remote welding with a surgical robot equipped with a digital camera used to observe the welding zone, in particular the difficulty in detecting the boundaries of the weld pool. The difference in the processing of the real image by the human brain is discussed in comparison with the image in the form of a film from a digital camera. In addition to the need of performing the second derivative of the image in real-time, three models of human recognition of an image were discussed, one of which was already studied by researchers from Cambridge, UK. The concept of melting the base material by bending the weld pool with the pressure of non-ionized arc gases and the American implementation of the measurement of the third dimension of the weld pool and determining the weld penetration by electronics of the welding machine are discussed. Desired movement trajectories of the electrode tip based on the physics of the welding arc and welding technology are presented along with difficulties in teaching the movements to welding trainees. Basics of the neural model of the brain with the vector model of artificial intelligence are also presented.
PL
W artykule omówiono różne wyzwania związane ze spawaniem zdalnym za pomocą robota chirurgicznego wyposażonego w kamerę cyfrową do obserwacji strefy spawania, w szczególności dyskutowano trudność w wykrywaniu granic jeziorka spawalniczego. Omówiono różnicę w przetwarzaniu obrazu rzeczywistego przez ludzki mózg w porównaniu z obrazem w postaci filmu z aparatu cyfrowego. Oprócz potrzeby wykonania drugiej pochodnej obrazu w czasie rzeczywistym, omówiono trzy modele rozpoznawania obrazu przez człowieka, z których jeden był już badany przez naukowców z Cambridge w Wielkiej Brytanii. Omówiono koncepcję topienia materiału podstawowego przez zaginanie jeziorka spawalniczego ciśnieniem niejonizowanych gazów łukowych oraz amerykańską implementację pomiaru trzeciego wymiaru jeziorka spawalniczego i określania wtopienia stymulowanego przez elektronikę spawarki. Przedstawiono pożądane trajektorie ruchu końcówki elektrody w oparciu o fizykę łuku spawalniczego i technologię spawania oraz trudności w uczeniu ruchów praktykantów. Przedstawiono również podstawy neuronowego modelu mózgu wraz z modelem wektorowym sztucznej inteligencji.
PL
W tym artykule omówiono różne wyzwania związane ze zdalnym szkoleniem i spawaniem za pomocą robota chirurgicznego i robota do rehabilitacji wyposażonego w aparat cyfrowy obserwujący strefę spawania, a w szczególności trudność w wykrywaniu granic jeziorka spawalniczego. Omówiono różnice w przetwarzaniu przez człowieka rzeczywistego obrazu przez ludzki mózg w porównaniu z obrazem w postaci filmu z cyfrowego aparatu fotograficznego. Oprócz potrzeby wykonywania drugiej pochodnej obrazu w czasie rzeczywistym, omówiono trzy modele rozpoznawania obrazu przez człowieka, z których jeden był już badany przez naukowców z Cambridge w Wielkiej Brytanii. Omówiono koncepcję topienia materiału podstawowego poprzez uginanie jeziorka spawalniczego pod ciśnieniem niezjonizowych gazów łuku elektrycznego i amerykańskie wykonanie pomiaru trzeciego wymiaru jeziorka spawalniczego i określenie głębokości wtopienia spoiny przez elektronikę spawarki. Przedstawiono pożądane trajektorie ruchu koncówki elektrody w oparciu o fizykę łuku spawalniczego i technologie spawania, a także omówiono trudności w nauczeniu ruchów spawaczy. Przedstawiono również podstawy modelu neuronowego mózgu z wektorowym modelem typów zdolności w sztucznej inteligencji.
EN
This paper discusses various challenges in remote welding with a surgical robot equipped with a digital camera used to observe the welding zone, in particular the difficulty in detecting the boundaries of the weld pool. The difference in the processing of the real image by the human brain is discussed in comparison with the image in the form of a film from a digital camera. In addition to the need of performing the second derivative of the image in real time, three models of human recognition of an image were discussed, one of which was already studied by researchers from Cambridge, UK. The concept of melting the base material by bending the weld pool with the pressure of non-ionized arc gases and the American implementation of the measurement of the third dimension of the weld pool and determining the weld penetration by electronics of the welding machine are discussed. Desired movement trajectories of the electrode tip based on the physics of the welding arc and welding technology are presented along with difficulties in teaching the movements to welding trainess. Basics of the neural model of the brain with the vector model of artificial intelligence are also presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.