Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main aim of this study to reproduce methane combustion experiment conducted in a rapid compressionexpansion machine using AVL FIRETM software in order to shed more light on the in-cylinder processes. The piston movement profile, initial and boundary conditions as well as the geometry of the combustion chamber with a prechamber were the same as in the experiment. Authors by means of numerical simulations attempted to reproduce pressure profile from the experiment. As the first step, dead volume was tuned to match pressures for a non-combustion (air-only) case. Obtained pressure profile in air compression simulations was slightly wider (prolonged occurrence of high pressure) than in the experiment, what at this stage was assumed to have negligible significance. The next step after adjusting dead volume included combustion simulations. In the real test facility, the process of filling the combustion chamber with air-fuel mixture takes 15 s. In order to shorten computational time first combustion simulations were started after the chamber is already filled assuming uniform mixture. These simulations resulted in more than two times higher maximum pressure than recorded in experiments. It was concluded that turbulence decays quickly after filling process, what was also confirmed by next combustion simulations preceded by the filling process. Then the maximum pressure was significantly decreased but still it was higher than in the experiments. Based on the obtained results it was assumed that the discrepancy noticed in air cases is further increased when combustion is included. Moreover, the obtained results indicated that pre-combustion turbulence level is very low and suggested that either piston profile movement is not correct or there is high-pressure leak in the test facility.
2
Content available remote LES numerical study on in–injector cavitating flow
EN
In this paper a computational study on hexane flow in a fuel injector is presented. Large Eddy Simulation (LES) was used to capture the turbulent patterns present in the flow. The main aim was to investigate the cavitation phenomenon and its interaction with turbulence as well as the influence of injection pressure and backpressure on fuel mass flow and flow conditions. Analysis of the approach to define the outlet boundary conditions in terms of convergence time and fluid mass outflow oscillations formed a crucial part of the study. Numerical simulations were performed with AVL Fire CFD (Computational Fluid Dynamics) software. The Euler-Euler approach and multifluid model for multiphase flow modelling were applied. Injector needle movement was included in the simulation. Results show that the additional volumes attached to the nozzle outlets improved the convergence of the simulations and reduced mass outflow oscillations. Fuel mass flow at the outlets was dependent on inlet pressure, position of the needle and backpressure, while the influence of backpressure on fuel mass flow was negligible. The presence of the vapor phase at the exit of the nozzles did not affect average fuel mass flow. All the simulations showed interaction between the gaseous phase distribution and the turbulence of the flow.
EN
The aim of this study was to investigate a possibility of using gaseous fuels of a low calorific value as a fuel for internal combustion engines. Such fuels can come from organic matter decomposition (biogas), oil production (flare gas) or gasification of materials containing carbon (syngas). The utilization of syngas in the barrel type Opposed-Piston (OP) engine arrangement is of particular interest for the authors. A robust design, high mechanical efficiency and relatively easy incorporation of Variable Compression Ratio (VCR) makes the OP engine an ideal candidate for running on a low calorific fuel of various composition. Furthermore, the possibility of online compression ratio adjustment allows for engine the operation in Controlled Auto-Ignition (CAI) mode for high efficiency and low emission. In order to investigate engine operation on low calorific gaseous fuel authors performed 3D CFD numerical simulations of scavenging and combustion processes in the 2-stroke barrel type Opposed-Piston engine with use of the AVL Fire solver. Firstly, engine operation on natural gas with ignition from diesel pilot was analysed as a reference. Then, combustion of syngas in two different modes was investigated – with ignition from diesel pilot and with Controlled Auto-Ignition. Final engine operating points were specified and corresponding emissions were calculated and compared. Results suggest that engine operation on syngas might be limited due to misfire of diesel pilot or excessive heat releas which might lead to knock. A solution proposed by authors for syngas is CAI combustion which can be controlled with application of VCR and with adjustment of air excess ratio. Based on preformed simulations it was shown that low calorific syngas can be used as a fuel for power generation in the Opposed-Piston engine which is currently under development at Warsaw University of Technology.
EN
The aim of this study is to investigate a possibility of Compression Auto-Ignition (CAI) control in a turbocharged 2-stroke barrel type Opposed-Piston (OP) engine fueled with a gasoline. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). A 3D CFD numerical simulations of the scavenging and combustion processes were performed with use of the AVL Fire solver that is based on a Finite Volume Method (FVM) discretization and offers a number of tools dedicated to numerical simulations of working processes in internal combustion engines. The VCR and water injection were considered for the ignition timing control. A number of cases was calculated with different engine compression ratios, different equivalence ratios and different amount of injected water. Results show that proposed measures should be appropriate for controlling the CAI combustion process. Furthermore, application of these solutions in the real engine can significantly contribute to increase in efficiency and decrease in emissions.
EN
The possibility of achieving high thermodynamic efficiency brings opposed-piston (OP) engines back into interest of research centers. If made as 2-stroke, the possibility of unidirectional scavenging arises together with lower engine cost due to removal of unnecessary parts like camshafts or poppet valves. Unfortunately, in the OP design the injection is perpendicular to cylinder axis, which is ineffective with conventional diesel injectors. Following article will present the proposed solution to this particular problem using an externally-attached swirl combustion chamber. The qualitative assessment of ability to meet the design expectations was performed in AVL Fire. The authors describe the CFD model and injector used for simulation. Contour plots and charts are given to compare the results. A variety of geometrical cases were analyzed. The recapitulation gives a critical evaluation of the proposed solution.
EN
The aim of this study was to determine possibilities of the soot and NOx emissions reduction from an existing heavy-duty compression-ignition (CI) engine based only on in-cylinder techniques. To that end numerical simulations of such processes as a multiphase fuel flow through injector nozzles, a liquid fuel jet breakup and evaporation, combustion and emissions formation were performed in AVL Fire 3D CFD software. The combustion process was calculated with the ECFM-3Z model and with the detailed n-heptane oxidation scheme that consisted of 76 species and 349 reactions. Both approaches of combustion modeling were validated against experimental data from the existing engine working under 75% and 100% loads. As for the reduction of the NOx emission an introduction of exhaust gas recirculation (EGR) was investigated. As for the soot concentration reduction such measures as an increased rail pressure, application of a post-injection and an increased injector nozzles conicity were investigated. Finally the ECFM-3Z model with emissions models, as well as the n-heptane mechanism predicted that it is possible to reach specified emissions limits with application of EGR, post-injection and increased nozzles conicity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.