Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Software-defined networking (SDN) is an approach to network management allowing to enhance the performance of the network and making it more flexible. The centralized architecture of SDN makes it vulnerable to cyberattacks, especially distributed denial of service (DDoS) attacks. Existing research investigates the detection of DDoS attacks separately on the control plane and data plane. However, there is a need for efficient and accurate detection of these attacks using features obtained from both control and data planes. Therefore, we present a mechanism for identifying DDoS attacks using entropy, multiple feature selection mechanisms, and deep learning. Initially, we use entropy on the control plane to detect anomalous activity and identify suspicious switches. Next, we capture traffic on the suspicious switches to detect DDoS attacks. To detect these attacks, we utilize multi-layer perceptron (MLP) deep learning models, convolutional neural network (CNN), and the long short-term memory (LSTM) approach. An InSDN dataset is used to train the model and test data are generated using Mininet emulation and the Ryu controller. The results reveal that LSTM outperforms MLP and CNN, achieving an accuracy of 99.83%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.