Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An advanced layered converter with fuzzy logic management for PV arrays
EN
Due to its potential in the industrial sector, photovoltaic energy transmission has posed a fascinating challenge in recent decades. The utilisation of line transformers, which have a variety of problems including substantial voltage dips, expensive installation costs, and higher load losses, is one of the most urgent difficulties with such a system. This paper provides an alternate method based on a high-gain DC/DC interleaved boost converter with a low input voltage, a high input current, and an output voltage that is more than three times that of the typical boost converter. The input current is split over the three phases of the interleaved converter; as a result, the current stress on the circuit and the semiconductor devices is decreased, which adds to a decrease in total losses. In addition, the voltage stress is minimised compared to the interleaved converter's high output voltage. Additionally, a Maximum Power Point Tracking (MPPT) controller based on fuzzy logic control (FLC) is intended to guarantee that the PV system performs at peak efficiency. Lastly, simulation studies using the MATLAB Simulink environment are shown to demonstrate the efficacy of the suggested architecture.
PL
Ze względu na swój potencjał w sektorze przemysłowym fotowoltaiczna transmisja energii stanowiła fascynujące wyzwanie w ostatnich dziesięcioleciach. Wykorzystanie transformatorów liniowych, z którymi wiąże się wiele problemów, w tym znaczne spadki napięcia, wysokie koszty instalacji i większe straty obciążenia, jest jedną z najpilniejszych trudności związanych z takim systemem. W tym artykule przedstawiono alternatywną metodę opartą na przetwornicy podwyższającej napięcie DC/DC z przeplotem o wysokim wzmocnieniu, przy niskim napięciu wejściowym, wysokim prądzie wejściowym i napięciu wyjściowym, które jest ponad trzykrotnie większe niż w przypadku typowej przetwornicy podwyższającej napięcie. Prąd wejściowy jest rozdzielany na trzy fazy konwertera z przeplotem; w rezultacie zmniejsza się obciążenie prądowe obwodu i urządzeń półprzewodnikowych, co przyczynia się do zmniejszenia całkowitych strat. Ponadto napięcie napięciowe jest zminimalizowane w porównaniu z wysokim napięciem wyjściowym konwertera z przeplotem. Dodatkowo kontroler śledzenia punktu mocy maksymalnej (MPPT) oparty na sterowaniu logiką rozmytą (FLC) ma zagwarantować, że system fotowoltaiczny działa z maksymalną wydajnością. Na koniec pokazano, że badania symulacyjne z wykorzystaniem środowiska MATLAB Simulink demonstrują skuteczność sugerowanej architektury.
EN
The use of phtovoltaic energy in water pumping is an economically viable and sustainable solution to rural communities without access to the electricity grid. The aim of this paper is to improve the performance of a phtovoltaic water pumping system by using a new converter structure based on three levels parallel multicell converter. This converter is controlled by two control loops, an external control based on the SMC and FLC MPPT algorithms and an internal control of the output branch current with the hybrid control based on the Petri nets. A comparative study between the boost converter and a three-levels parallel multicellular converter with the SMC and FLC MPPT has been made, which allows us to conclude that the new structure is more advantageous than the conventional structure especially. The boost gives rise to a wide band of strong power oscillations as well as the current and a voltage of PV, which translates into a high harmonic ratio with respect to the three-level parallel multicellular converter structure.
PL
Wykorzystanie energii fotowoltaicznej do pompowania wody jest ekonomicznie opłacalnym i zrównoważonym rozwiązaniem dla społeczności wiejskich bez dostępu do sieci elektrycznej. Celem tego artykułu jest poprawa wydajności fotowoltaicznego systemu pompowania wody poprzez zastosowanie nowej struktury konwertera opartej na trójpoziomowym równoległym konwerterze wieloogniwowym. Przetwornica ta jest sterowana przez dwie pętle sterowania, sterowanie zewnętrzne oparte na algorytmach SMC i FLC MPPT oraz sterowanie wewnętrzne prądu gałęzi wyjściowego ze sterowaniem hybrydowym opartym na sieciach Petriego. Przeprowadzono badanie porównawcze pomiędzy konwerterem boost a trójpoziomowym równoległym konwerterem wielokomórkowym z SMC i FLC MPPT, co pozwala stwierdzić, że nowa konstrukcja jest szczególnie korzystniejsza niż konstrukcja konwencjonalna. Wzmocnienie powoduje powstanie szerokiego pasma silnych oscylacji mocy oraz prądu i napięcia PV, co przekłada się na wysoki współczynnik harmonicznych w stosunku do trójpoziomowej równoległej struktury wielokomórkowej przetwornic.
EN
The use of wind energy in water pumping is an economically viable and sustainable solution to rural communities without access to the electricity grid. The aim of this paper is to present a detailed modeling of the wind-powered pumping system, propose and compare some control schemes to optimize the performance of the system and enhance the quality of the generated power. The wind energy system used in this paper consists of a permanent magnet synchronous generator (PMSG) and static converters directly coupled to an asynchronous motor that drives a centrifugal pump. A typical control is applied to the proposed configuration for the purpose of controlling the generator to extract maximum wind power. Furthermore, four types of controllers (PI and conventional RST polynomials, adaptive RST-fuzzy and genetic algorithm are designed for the wind energy system and tested under various operating conditions.
PL
Wykorzystanie energii wiatru w pompowaniu wody jest opłacalnym i zrównoważonym rozwiązaniem dla społeczności wiejskich bez dostępu do sieci elektrycznej. Celem tego artykułu jest przedstawienie szczegółowego modelowania systemu pompowania napędzanego wiatrem, zaproponowanie i porównanie niektórych schematów sterowania, aby zoptymalizować wydajność systemu i poprawić jakość generowanej mocy. System energii wiatrowej zastosowany w tym artykule składa się z synchronicznego generatora z magnesami trwałymi (PMSG) i przekształtników statycznych bezpośrednio sprzężonych z silnikiem asynchronicznym, który napędza pompę odśrodkową. Typowe sterowanie jest stosowane do proponowanej konfiguracji w celu sterowania generatorem w celu wydobycia maksymalnej energii wiatru. Ponadto cztery typy sterowników (PI i konwencjonalne wielomiany RST, adaptacyjny algorytm rozmytego RST i genetyczny) są zaprojektowane dla systemu energii wiatrowej i testowane w różnych warunkach pracy).
EN
Variable-speed wind energy conversion systems based on permanent magnet synchronous generators (PMSG) are becoming increasingly popular over the recent years and PMSGs are being adopted by many wind turbine manufacturers especially due to several advantages such as high energy density, low maintenance, self-excitation and direct-drive operation. Vector control is currently the most widely used control strategyin PMSGs to achieve decoupling between the magnetic flux and torguqe via the direct and quadrature components of the current respectively.The major disadvantage of this method is the use of current sensors to ensure accurate decoupling. In this work, a decoupling vector control strategy based on Type-1 and Type-2 fuzzy logic is proposed eliminating the use of current sensors. In addition, a maximum power point tracking (MPPT) technique is proposed to optimise the power extracted from the wind turbine system. Two speed control methodes based on adaptive Type-1 and Type-2 fuzzy logic fractional proportional and integral (PI) controllers. Several simulations are presented to demonstrated the effectiveness of the proposed control schemes for the PMSG-based wind energy conversion system.
PL
Generator synchroniczny z magnesem trwałym PMSG odgrywa kluczową rolę w konwersji energii wiatru (WECS). Sterowanie wektorowe było najczęściej stosowane jako strategia sterowania dla tego generatora w celu zapewnienia oddzielenia prądu stałego od kwadratury. Wadą tej metody jest to, że potrzebuje czujników prądu, aby zapewnić oddzielenie. Artykuł koncentruje się na sterowaniu wektorem oddzielającym opartym na logice rozmytej typu 1 (DFLC1_VC) i logice rozmytej typu 2 (DFLC2_VC). Możemy zapewnić kontrolę systemu, a oddzielenie bez użycia czujników prądu zapewnia kontrolę i odsprzęgnięcie w tym samym czasie. Wyniki symulacji wykazały skuteczność proponowanych strategii kontroli WECS w oparciu o PMSG.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.