Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
In this article, we propose the realization of XNOR logic function by using all-optical XOR and NOT logic gates. Initially, both XOR and NOT gates are designed, simulated and optimized for high contrast outputs. T-shaped waveguides are created on the photonic crystal platform to realize these logic gates. An extra input is used to perform the inversion operation in the NOT gate. Inputs in both the gates are applied with out of phase so as to have a destructive interference between them and produce negligible intensity for logic ‘0’. The XOR and NOT gates are simulated using Finite Difference Time Domain method which results with a high contrast ratio of 55.23 dB and 54.83 dB, respectively at a response time of 0.136 ps and 0.1256 ps. Later, both the gates are cascaded by superimposing the output branch of the waveguide of XOR gate with the input branch of the waveguide of NOT gate so that it can be resulted with compact size for XNOR logic function. The resultant structure of XNOR logic came out with the contrast ratio of 12.27 dB at a response time of 0.1588 ps. Finally, it can be concluded that the proposed structures with fair output performance can suitably be applied in the design of photonic integrated circuits for high speed computing and telecommunication systems.
EN
The breadth first signal decoder (BSIDE) is well known for its optimal maximum likelihood (ML) performance with lesser complexity. In this paper, we analyze a multiple-input multiple-output (MIMO) detection scheme that combines; column norm based ordering minimum mean square error (MMSE) and BSIDE detection methods. The investigation is carried out with a breadth first tree traversal technique, where the computational complexity encountered at the lower layers of the tree is high. This can be eliminated by carrying detection in the lower half of the tree structure using MMSE and upper half using BSIDE, after rearranging the column of the channel using norm calculation. The simulation results show that this approach achieves 22% of complexity reduction for 2x2 and 50% for 4x4 MIMO systems without any degradation in the performance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.