In this study, ceramic TiO2 thin films were prepared on glass substrates using sol-gel and spin-coating methods from the TNBT/ AcOH/ EtOH/ H2O solution. The obtained coatings were subjected to drying at room temperature and were then calcined in the air at different temperatures in a range of 400–600°C in order to obtain clean TiO2 layers. The surface morphology and chemical composition were characterized with the use of a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDX). Research has shown the presence of elements in the TiO2 and the influence of temperatures on layer thickness. Analysis of optical properties and energy gap width of the prepared coatings was determined by means of spectra analysis of absorbance as a function of radiation energy obtained with the use of the UV-VIS spectrophotometer. The obtained spectra of the layers are characterized by a shift of absorption lines towards the visible light wavelengths and the obtained values of band gaps decrease as the calcination temperature rises. The obtained and developed results of TiO2 thin films testify to the wide application possibilities of the layers in elements which use photocatalytic processes such as self-cleaning surfaces, solar cells, pollution removing membranes and optoelectronic components.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.