Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Metallic fuel slugs containing rare-earth (RE) elements have high reactivity with quartz (SiO2) molds, and a reaction layer with a considerable thickness is formed at the surface of metallic fuel slugs. The surface characterization of metallic fuel slugs is essential for safety while operating a fast reactor at elevated temperature. Hence, it is necessary to evaluate the surface characteristics of the fuel slugs so that chemical interaction between fuel slug and cladding can be minimized in the reactor. When the Si element causes a eutectic reaction with the cladding, it deteriorates the metallic fuel slugs. Thus, it is necessary to examine the characteristics of the surface reaction layer to prevent the reaction of the metallic fuel slugs. In this study, we investigated the metallurgical characteristics of the surface reaction layer of fabricated U-10wt.%Zr-Xwt.%RE (X = 0, 5, 10) fuel slugs using injection casting. The results showed that the thickness of the surface reaction layer increased as the RE content of the metallic fuel slugs increased. The surface reaction layer of the metallic fuel slug was mainly formed by RE, Zr and the Si, which diffused in the quartz mold.
EN
The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.