Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Rozwój technologii pomiarowej w pracach inwentaryzacyjnych
PL
W artykule przedstawiono, w sposób opisowy, rozwój technologii pomiarowej wykorzystywanej podczas prowadzenia prac inwentaryzacyjnych obiektów budowlanych. Na przestrzeni zaledwie kilkunastu lat można zaobserwować duży postęp w technologii pomiarowej, a używane do tego narzędzia są coraz bardziej zaawansowane. Dokonał się ogromny przeskok, od pomiarów ręcznych za pomocą miar tradycyjnych lub miar taśmowych, przez dalmierze laserowe, skończywszy na laserowych skanerach 3D rejestrujących całą otaczającą przestrzeń.
EN
The paper presents descriptively the development of measurment technology used during surveys of engineering structures. Over a few dozen years, huge progress has been made in measurement technology, and the instruments used for this purpose are becoming more and more sophisticated. Over a relatively short time there was a rapid advance from manual measurement techniques using traditional measures or tape measures, through laser rangefinders, to laser 3D scanners registering the entire surrounding space.
EN
Existing provisions leading to the assessment of the buckling resistance of pressurised spherical shells were published in the European Design Recommendations (EDR) [1]. This book comprises rules which refer to the stability of steel shells of different shapes. In the first step of the general procedure they require calculation of two reference quantities: the elastic critical buckling reference pRcr and the plastic reference resistance pRpl. These quantities should be determined in the linear buckling analysis (LBA) and in the materially nonlinear analysis (MNA) respectively. Only in the case of spherical shells the existing procedure has exceptional character. It is based on the geometrically nonlinear analysis (GNA) and on the geometrically and materially nonlinear analysis (GMNA), respectively. From this reason, in this particular case there was a need to change the existing approach. The new procedure was presented in the work of Błażejewski & Marcinowski in 2016 (comp. [2]). All steps of the procedure leading to the assessment of buckling resistance of pressurized steel, spherical shells were presented in this work. The elaborated procedure is consistent with provisions of Eurocode EN1993-1-6 (comp. [3]) and with recommendations inserted in Europeans Design Recommendations [1]. The proposed capacity curves were compared with existing proposal published in [1] for three different fabrication quality classes predicted in [3]. In this work also comparisons of author’s proposals with experimental results obtained by other authors were presented.
PL
W niniejszej pracy przedstawiono porównanie dwóch procedur szacowania nośności wyboczeniowej powłok sferycznych na tle wybranych wyników badań eksperymentalnych. Porównanie głównych wartości referencyjnych występujących w obu procedurach oraz porównanie sposobu wyznaczania odcinka sprężysto-plastycznego krzywej nośności wyboczeniowej dokładnie pokazuje i tłumaczy różnice pomiędzy dwoma algorytmami obliczeniowymi. W pewnych zakresach wartości stosunku R/t dla konkretnych przypadków, różnice te sięgają nawet 40%. Świadczy to o dość dużym zapasie nośności i konserwatywnym charakterze zapisów zawartych w EDR5th. Porównanie dwóch procedur obliczeniowych z wynikami badań eksperymentalnych pokazuje zasadność stosowania obu podejść. Dla każdego z nich otrzymane przebiegi krzywych nośności wyboczeniowej znajdują się poniżej punktów odpowiadających wynikom eksperymentalnym. Jednakże krzywe nośności otrzymane wg nowej procedury wykazują większą zbieżność z wynikami badań eksperymentalnych. Stąd wniosek, że stosowanie bardziej zachowawczych metod obliczeniowych można uznać za niezasadne.
EN
Assessment of buckling resistance of pressurised spherical cap is not an easy task. There exist two different approaches which allow to achieve this goal. The first approach involves performing advanced numerical analyses in which material and geometrical nonlinearities would be taken into account as well as considering the worst imperfections of the defined amplitude. This kind of analysis is customarily called GMNIA and is carried out by means of the computer software based on FEM. The other, comparatively easier approach, relies on the utilisation of earlier prepared procedures which enable determination of the critical resistance &rhoRcr the plastic resistance &rho sub>Rpl and buckling parameters &alpha &beta &eta &lambda sub>0 needed to the definition of the standard buckling resistance curve. The determination of the buckling capacity curve for the particular class of spherical caps is the principal goal of this work. The method of determination of the critical pressure and the plastic resistance were described by the authors in [1] whereas the worst imperfection mode for the considered class of spherical shells was found in [2]. The determination of buckling parameters defining the buckling capacity curve for the whole class of shells is more complicated task. For this reason the authors focused their attention on spherical steel caps with the radius to thickness ratio of R/t = 500, the semi angle &phi= 30o and the boundary condition BC2 (the clamped supporting edge). Taking into account all imperfection forms considered in [2] and different amplitudes expressed by the multiple of the shell thickness, sets of buckling parameters defining the capacity curve were determined. These parameters were determined by the methods proposed by Rotter in [3] and [4] where the method of determination of the exponent &eta by means of additional parameter k was presented. As a result of the performed analyses the standard capacity curves for all considered imperfection modes and amplitudes 0.5t, 1.0t, 1.5t were obtained. Obtained capacity curves were compared with the recommendations for different fabrication quality classes formulated in [5].
PL
Oszacowanie nośności wyboczeniowej stalowej powłoki sferycznej obciążonej ciśnieniem zewnętrznym nie należy do łatwych zadań. Istnieją dwa sposoby, którymi można się posłużyć aby osiągnąć ten cel. Pierwszy z nich to wykonanie zaawansowanych analiz numerycznych, w których uwzględnione zostaną nieliniowości geometryczne i materiałowe oraz najbardziej niekorzystne formy imperfekcji geometrycznych o zadanej amplitudzie. Ten typ analizy nosi nazwę GMNIA, a wykonuje się ją z wykorzystaniem oprogramowania komputerowego bazującego na MES. Druga metoda, względnie prosta, polega na wykorzystaniu gotowych procedur, dzięki którym można określić nośność krytyczną, nośność plastyczną powłoki oraz parametry wyboczeniowe &alpha &beta &eta &lambda sub>0 niezbędne do opisania klasycznej krzywej nośności. Wyznaczenie krzywej nośności dla pewnej klasy wycinka powłoki sferycznej jest głównym celem tej pracy. Sposób szacowania nośności krytycznej i plastycznej autorzy przedstawili w pracy [1], zaś określenie najbardziej niekorzystnej imperfekcji geometrycznej dla badanej rodziny powłok sferycznych w pracy [2]. Wyznaczenie parametrów wyboczeniowych opisujących klasyczną krzywą nośności jest znacznie trudniejszym zadaniem, dlatego też autorzy niniejszej pracy wybrali do badań rodzinę powłok stalowych o stosunku promienia do grubości R/t = 500, połówkowym kącie rozwarcia powłoki &phi= 30o i sposobie podparcia BC2 (podparcia sztywne). Uwzględniając wszystkie, określone w pracy [2], formy imperfekcji geometrycznych o różnych amplitudach (odniesionych do grubości t) wyznaczono zestawy parametrów wyboczeniowych definiujących krzywą nośności wyboczeniowej. Parametry te określono posługując się procedurami proponowanymi przez Rottera w pracy [3] oraz w pracy [4], w której to przedstawiono sposób wyznaczania dodatkowego współczynnika k, służącego do bezpośredniego wyliczenia wykładnika &eta. Rezultatem przeprowadzonych analiz są typowe krzywe nośności dla każdej z form imperfekcji o amplitudach wielkości 0,5t, 1,0t, 1,5t. Otrzymane krzywe porównano z obowiązującymi zaleceniami sformułowanymi w [5] (EDR5th) dla różnych klas dokładności wykonania.
PL
Stalowe powłoki sferyczne obciążone ciśnieniem zewnętrznym narażone są na utratę stateczności, która najczęściej decyduje o ich nośności. Występujące w tego typu konstrukcjach imperfekcje geometryczne mogą znacząco wpłynąć na obniżenie nośności powłoki. Analizowane dotychczas formy imperfekcji, w postaci pierwszej i drugiej formy wyboczeniowej, nie wyczerpują możliwych do zaobserwowania w rzeczywistości niedoskonałości geometrycznych. Zestawienie i porównanie innych, spotykanych w praktyce imperfekcji geometrycznych pozwoli określić najbardziej niekorzystną z nich. Dodatkowe uwzględnienie normowych amplitud imperfekcji, dla każdej z form, pozwoliło określić przedziały amplitud, w których dana forma jest rzeczywiście najbardziej niekorzystna. Taka informacja pozwoli inżynierom uniknąć błędnego przyjęcia najbardziej niekorzystnej imperfekcji dla założonej klasy wykonania powłoki sferycznej.
EN
Steel, spherical shells subjected to an external pressure are exposed to the loss of stability and such a phenomenon determines the global resistance of such shells. Unavoidable, geometric imperfections present is this class of shells affect significantly global resistance of shells. The imperfection form corresponding to the first and second buckling modes, analysed in previous works of authors, do not cover all possible and observed in reality imperfection modes. The specification and comparison of other imperfections encountered in practice will allow to identify the most adverse ones. Additionally to the imperfection forms also their amplitudes were analysed. Consequently the ranges in which considered imperfection form is in fact the most adverse were determined. On the basis of this knowledge, the designer can choose the most adverse imperfection mode for given quality fabrication class of the shell.
PL
Siły południkowe w silosie stalowym, którego ściany są wykonane z blachy profilowanej poziomo są przenoszone przez żebra pionowe. Elementy te są zazwyczaj wykonywane z cienkościennych kształtowników zimnogiętych wrażliwych na miejscową utratę stateczności. W pracy przedstawiono numeryczną procedurę oszacowania nośności wyboczeniowej rodziny żeber wykonanych z blach o różnej grubości. Uwzględniono imperfekcje w postaci pierwszej formy wyboczenia i amplitudach do wartości 4t włącznie. Wyniki porównano z bardzo zachowawczymi wartościami nośności wyboczeniowej takich elementów proponowanymi w zapisach normy PN-EN1993-4-1.
EN
In steel silos fabricated from horizontally corrugated sheets, the vertical stiffeners (columns) sustain vertical forces as a result of friction of a bulk material against the silo wall. Columns are usually of cold formed steel sections. Due to the fact that stiffener failures are the most frequent cause of silos collapses, it is important to estimate accurately their resistance. The paper deals with numerical modelling of the elastic-plastic collapse of columns. Geometrically and materially nonlinear analyses (GMNIA) were carried out in which imperfections were taken into account. The imperfection forms were taken as a first buckling mode obtained in the linear buckling analysis (LBA). Amplitudes of imperfections were assumed as a =t, 2t, 3t, 4t, where t is the thickness of the stiffeners wall. It was revealed that the buckling resistance is very sensitive to the imperfection amplitude. All numerical analyses were performed by the COSMOS/M system based on FEM. Buckling resistance of all analysed stiffeners was calculated also by means of formulae inserted in Eurocode PN-EN1993-4-1. Buckling resistances obtained by the proposed numerical approach were greater than their counterparts being the result of provisions inserted in PN-EN1993-4-1 and appear to be more realistic.
PL
Norma PN-EN 1993-4-1 [1] zawiera zapisy dotyczące szacowania nośności wyboczeniowej ścian stalowych silosów walcowych. Zalecenia zawarte w tej normie są względnie łatwe w zastosowaniu w przypadku walcowych ścian izotropowych. Oszacowanie nośności wyboczeniowej ścian z blach profilowanych jest dużo bardziej skomplikowane i wymaga od projektanta sporego doświadczenia w korzystaniu z tych zapisów. W referacie zaprezentowano obliczenia praktyczne, które musiał wykonać projektant projektujący stalowe silosy na zboże. Rozważania zaprezentowane w pracy dotyczą głównie nośności wyboczeniowej ścian. Stosowane w silosach dachy stożkowe czy sferyczne nie były przedmiotem rozważań. Były rozpatrywane dwa przypadki ścian silosów: walcowa ściana izotropowa oraz walcowa ściana z blach profilowanych poziomo i wzmocnionych zewnętrznymi żebrami pionowymi wykonanymi z cienkościennych elementów zimnogiętych. Nośność wyboczeniowa została określona dla południkowych naprężeń ściskających oraz dla ciśnienia zewnętrznego działającego poprzecznie do powierzchni ścianki silosu. W przypadku ścianki profilowanej procedura wymaga znalezienia najmniejsze wartości nośności, która jest funkcją liczby fal obwodowych j oraz długości pionowej półfali wyboczeniowej li. Zaprezentowane obliczenia mogą być traktowane jako rodzaj szablonu przydatnego projektantom silosów stalowych.
EN
PN-EN 1993-4-1 code [1] contains provisions which enable structural engineers to predict the buckling resistance of a steel, cylindrical silo wall. The rules presented in [1] are quite easy in the case of isotropic walls. Buckling resistance assessment of corrugated walls is more difficult and requires some experience in such calculations. The paper presents practical calculations which were performed during designing of actual grain storage silos. The roofs were excluded from the study and all attention was focused on buckling resistance of the silo wall. Two different cases were analysed: a cylindrical isotropic wall and a wall made of horizontally corrugated steel sheets and stiffened by vertical columns made of thin walled, cold-formed structural members. Buckling resistance was determined for meridional compressive stresses and for external pressure acting laterally to the wall surface. In the case of corrugated wall the procedure requires finding the smallest value of buckling resistance as a function of buckling wave number j in horizontal direction and the buckling length in vertical direction li. The presented calculations can be treated as a kind of a template for designers of steel silos.
PL
Krótko po oddaniu do użytku trybun stadionu zaobserwowano drgania pojawiające się w trakcie miarowych podskoków kibiców. Amplituda drgań zadaszenia trybuny była na tyle znacząca, że wzbudziło to niepokój właściciela obiektu. Podczas kolejnych zawodów przeprowadzono pomiary, których celem było zdiagnozowanie przyczyny nadmiernych drgań. Użyto do tego celu wyspecjalizowanej aparatury pomiarowej, mierząc przyspieszenia, prędkości i przemieszczenia w wybranych miejscach konstrukcji stadionu. Wyniki badań okazały się jednoznaczne: częstotliwość drgań swobodnych konstrukcji zadaszenia trybuny pokrywała się niemal z częstotliwością wymuszeń w postaci miarowych podskoków kibiców. W związku z zaistniałym problemem przeanalizowano numerycznie szereg konstrukcyjnych rozwiązań dynamicznego przestrojenia konstrukcji. Jedną z koncepcji wzmocnienia zrealizowano i poddano próbom wzbudzenia. Wyniki z przeprowadzonych analiz numerycznych oraz pomiarów wykonanych podczas zawodów zawarto w niniejszej pracy.
EN
In a newly opened stadium strong vibrations were observed when the spectators jumped rhythmically. The measurements taken during competitions confirmed this observation. The amplitude of roof vibrations reached the value of 35 mm and was too big from the structural safety point of view. Additional numerical analyses revealed that the frequency of free vibrations of the stadium roof was nearly equal to the frequency of rhythmical jumps of the spectators. It was clear that the phenomenon of the resonance took place. To avoid the resonance additional structural members in a form of steel columns were proposed. Numerical analyses and measurements made after the structural modifIcation revealed that the frequency of free vibrations of the stadium roof was shifted to a very high value of 5,5 Hz and to this end the resonance was excluded. After the proposed structural modifIcation the stadium can be exploited safely.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.