Studies have shown that rubberised concrete is a potential pavement material. Pavement materials are generally expected to possess concrete with high impact resistance, especially in regions where winter temperatures remain lower than the freezing point for long periods. However, knowledge about the performance of rubberised concrete on impact under low temperatures is still limited. In this study, experiments were conducted to evaluate the compressive strength, elasticity modulus, bending strength, and impact resistance of rubberised concrete at room temperature (20 °C) and at a sub-zero temperature (− 20 °C). Meanwhile, a new U-shaped specimen drop-weight test was performed as an impact test. The results indicated that although the impact toughness of both rubberised and plain concrete types decreased at low temperatures, rubber particles also had positive effects on concrete impact resistance at − 20 °C. In addition to macroscopic tests, mercury injection and molecular dynamics simulations were performed to understand the mechanism through which rubber particles improve the impact resistance of concrete at low temperatures. The pores that could not freeze accounted for 1.55% of the total pores in plain concrete; this value was 2.36% in concrete with a rubber particle density of 50 kg/m3. From the results of this study, we can conclude that the addition of rubber can change the distribution of water or ice in concrete pores, which leads to an improvement in the toughness of concrete at a low temperature (- 20 °C).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, a screwed copper tube was cladded an aluminum tube by a new explosive cladding method. To study the modalities of the bonding interface, a light microscope was used to observe the bonding interface. To expose the weak position of the interface, a three-point bending test was conducted under extreme condition. Then the BSE (Backscattering Electron) images of the bent interfaces were obtained. Meanwhile, the EDS (Energy Disper-sive Spectrometry) analyses of the melted zone were performed. The results of the light microscopic observations show that there are four bonding modalities on the interface. They can be summarized to two bonding modalities: direct bonding and bonding with the melted zone. There are no macro cracks on the interface of the bent specimens, which represents a reliable joining generally. The elastic modulus of Al-Cu bimetallic tube along the axial direction is 85.2Gpa. The BSE images, the EDS analyses and the microhardness tests show the direct bonding with some characteristics of the micro wavy interface is a pretty nice bonding pattern. The melted zone composed of CuAl2 is a weak bonding pattern, which may affect the mechanical property of the joint.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.