Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nanocellulose (NC) were extracted from the Moroccan Alfa plant (Stipa tenacissima L.) and characterised. These Alfa cellulosic nanoparticles were used as reinforcing phase to prepare bionanocomposite films using carboxymethyl cellulose as matrix. These films were obtained by the casting/evaporation method. The crystallinity of NC was analysed by X-ray diffraction, the dimension of NC by atomic force microscopy, molecular interactions due to incorporation of NC in carboxymethyl cellulose (CMC) matrix were supported by Fourier transforms infrared (FTIR) spectroscopy. The properties of the ensuing bionanocomposite films were investigated using tensile tests, water vapour permeability (WVP) study and thermogravimetric analysis. With the progress of purification treatment of cellulose, the crystallinity is improved compared to the untreated fibres; this can be explained by the disappearance of the amorphous areas in cellulose chain of the plant. Consequently, the tensile modulus and tensile strength of CMC film increased by 60 and 47%, respectively, in the bionanocomposite films with 10 wt% of NC, and decrease by 8.6% for WVP with the same content of NC. The NC obtained from the Moroccan Alfa fibres can be used as a reinforcing agent for the preparation of bionanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials.
2
Content available remote Antibacterial Properties of Functional Polyamide 6.6
EN
Polyamide 6.6 multifilaments are grafted with the monomer N-allyliminodiacetic acid for the purpose of removal of some heavy metal ions from their aqueous solutions by forming its metal chelate especially with Ag+ ion. Such a fibrous chelate-forming resin has been used with success due to its large surface area, which contains an important metal chelate-forming functional group, where metal ions are adsorbed or desorbed on its surface, and therefore having an improved adsorption and desorption capability. In previous work, chelate-forming fibre was characterised by ICP-AES analysis according to the digestion method by microwave. The antibacterial activity of the prepared fibre is investigated with Escherichia coli bacteria as reference, according to the zone of inhibition method in agar medium. The material used as reference without metal does not present any effect on E. coli. However, the chelateforming fibres with Ag+ have a strong bactericidal effect, even with a low concentration of silver ions. These modified materials can be used as highly effective bactericidal composites that may be used in future applications for the production of antimicrobial textiles, papers or polymer materials functionalisation
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.