An identity s=t is called a hyperidentity in a variety V if by substituting terms of appropriate arity for the operation symbols in s=t, one obtains an identity satisfied in V. Such substitutions are called hypersubstitutions. In the paper we consider hyperidentities and hypersubstitutions in the variety of differential groupoids, certain idempotent and medial groupoids. differential groupoids are modes as defined in [Rom-S;85]. We show that this variety and all its subvarieties are left-edge solid.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we determine the structure of the groupoid of normal form hypersubstitutions with respect to the variety of symmetric, idempotent, entropic groupoids, describe the monoid of all proper hypersubstitutions, and ask which identities are satisfied as hyperidentities.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.