Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the experimental results of a Combined Heat and Power (CHP) prototype based on a SI V-twin internal combustion engine driving a synchronous generator. The paper presents the criteria that were used to select the combustion engine and the electrical generator for the prototype. The internal combustion engine has been adapted to be fuelled by natural gas or LPG, with the possibility of controlling the load in two ways, i.e. by changing the throttle position (quantitatively) and/or the value of the excess air ratio by changing the fuel dose at a constant throttle position (qualitatively). The applied method of control allows to improve the efficiency of the engine especially in the range of partial loads. The experimental tests were carried out at a constant speed of 1500 rpm. During the tests, the fuel consumption of the internal combustion engine, the composition of the exhaust gas at the outlet of the exhaust system, the electrical parameters of the synchronous generator and the temperature at selected locations of the CHP system instance were measured. According to the obtained results, there was a slight increase in the efficiency of electricity generation with the application of the developed method of control of the combustion engine. The maximum power generation efficiency for Natural Gas (NG) was higher compared to LPG by more than 2 percentage points. The exhaust gas emission level confirm that the prototype cogeneration system meets the Stage II emission standard (in accordance with Directive 2002/08/EC for small SI engines with a power below 19 kW. D2 ISO 8178).
EN
The paper presents data resulting by the preliminary experimental tests performed on a micro CHP (combined heat and power) 7 kWel unit. The engine load has been controlled by throttle position (quantitatively) or/and the value of air excess ratio (qualitatively) QQLC. By this way the engine efficiency can be improved in the range of partial loads by reducing the exergy losses during the inlet stroke. During the tests engine has been powered with LPG fuel. The engine performance together with environmental impact has been studied in this paper. Used method shows that despite the reduction of the load from 5.6 kW to 4.7 kW while burning the lean mixture, the efficiency of electricity generation increased slightly. The efficiency grew by approx. 1.41 percentage point comparing with the results obtained for almost constant load but obtained by burning the lean mixture (λ = 1.3), followed by increased throttling and combustion of the stoichiometric mixture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.