Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Low-Mass Companions to Nine Stars
EN
We present an independent spectroscopic and radial velocity analysis for nine stars from the Pennsylvania-Toruń Planet Search. For BD+24 4697, we present an updated true companion's mass (0.16±0.02 M⊙) as well as evidence of stellar activity. For BD+54 1640 and BD+65 1241 we present true masses of companions, m=0.15±0.04 M⊙) and m=0.091± 0.005 M⊙), respectively. For BD+63 974 and BD+69 935 we find low mass companions with m sin i=0.046±0.001 M⊙) and m sin i=0.090±0.005 M⊙). For BD+52 1281, BD+54 1382, TYC 2704-2680-1, and TYC 3525-02043-1 we present evidence of low-mass companions with m sin i of 0.115±0.006 M⊙), 0.083±0.007 M⊙), 0.279±0.009 M⊙), and 0.064±0.006 M⊙), respectively. Consequently, BD+54 1382, BD+63 974, BD+65 1241, BD+69 935 and TYC 3525-02043-1 appear to be brown dwarf host candidates.
2
Content available remote Vision Transformer for Transient Noise Classification
EN
Transient noise (glitches) in LIGO data hinders the detection of gravitational waves (GW). The Gravity Spy project has categorized these noise events into various classes. With the O3 run, there is the inclusion of two additional noise classes and, thus, a need to train new models for effective classification. We aim to classify glitches in LIGO data into 22 existing classes from the first run plus 2 additional noise classes from O3a using the Vision Transformer (ViT) model. We train a pre-trained Vision Transformer (ViT-B/32) model on a combined dataset consisting of the Gravity Spy dataset with the additional two classes from the LIGO O3a run. We achieve a classification efficiency of 92.26%, demonstrating the potential of Vision Transformer to improve the accuracy of gravitational wave detection by effectively distinguishing transient noise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.