Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of this work was to obtain polyurethane matrix composite materials reinforced with Tb0.3Dy0.7Fe1.9 particles and to observe changes of magnetic properties and magnetostriction of samples with different particle size distributions of Tb0.3Dy0.7Fe1.9 powder and varying volume concentration. Design/methodology/approach: The studies was performed on composite materials with the polyurethane matrix reinforced with Tb0.3Dy0.7Fe1.9 powders. The morphology of powder was examined by scanning electron microscopy (SEM) and analysis of the grain distribution of Tb0.3Dy0.7Fe1.9 powder was made using the Mastersizer 2000 analyser. The changes of magnetostriction and magnetic properties, including hystersis loops and effective permeability with changing applied field are tested. Findings: Analysis establishes a direct connection between magnetic properties and structural characteristics of the Tb0.3Dy0.7Fe1.9 powder size, which was used as reinforcement phase. The increase of particle size distribution of Tb0.3Dy0.7Fe1.9 powder in composite materials amplify the magnetostrictive responses, moreover the change of magnetic properties as a function of volume fraction of Tb0.3Dy0.7Fe1.9 powder were confirmed. Research limitations/implications: Contributes to research on structure and properties of magnetostrictive composite materials with the polymer matrix reinforced with Tb0.3Dy0.7Fe1.9 powders. Practical implications: The polymer matrix in investigated composite materials causes growth of resistivity, limiting this way losses for eddy currents at the high operating frequency of the transducers. In addition the values of permeability of composite materials is nearly constant in investigated frequency range. Originality/value: The obtained results show the possibility of manufacturing the magnetostrictive composite materials based on the Tb0.3Dy0.7Fe1.9 particles, with desired properties in cost effective way in comparison to conventional giant magnetostrictive materials (GMM).
EN
Purpose: The aim of this work is to obtain polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9particles and to observe changes of magnetic properties and magnetostriction of samples with different particle size distributions of Tb0.3Dy0.7Fe1.9 powder. Design/methodology/approach: Polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles fabricating method were developed during the investigations, making possible to obtain materials with good physical properties. The influence of the concentration and powder particles size of the Td0.3Dy0.7Fe1.9 on magnetic and magnetostrictive properties were estimated. Metallographic examination of powders morphology and the structure observations of composite materials were made. Findings: Composite materials consisting of Td0.3Dy0.7Fe1.9 particles can extend the possibilities of application the magnetostrictive materials and reduce the cost of their manufacturing. The obtained materials show regular distribution of Td0.3Dy0.7Fe1.9 powder in polyurethane matrix. Research limitations/implications: The advantage of polyurethane matrix magnetostrictive composite materials are their simple technology and lowering manufacturing cost in comparison to monolithic Td0.3Dy0.7Fe1.9. These efforts can be considered as very up-to-date from the scientific point of view. Originality/value: The originality of this investigations is the statement that increasing the size of the Td0.3Dy0.7Fe1.9 particles cause increasing the strain response and this is due to the demagnetization effects.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.