Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of the proposed research is to investigate operational properties of a wheel steel treated with simultaneous solid solution and precipitation hardening at various carbon content, in comparison with the standard wheel grade T steel. Design/methodology/approach: The mechanical behaviour of wheel steels with increased content of silicon, manganese, vanadium, and nitrogen at various carbon content has been investigated and compared to that of the standard high-strength wheel grade T steel. The steels were undergo thermal treatment due to austenitic heating up to a temperature of 950.C with cooling down in water to 550.C followed by intense blowing of blanks in the air. After that, a tempering was performed at a temperature in the range of 450-650.C. Static strength (UTS), relative elongation (TEL), impact toughness tests (KCV) were determined on standard specimens. The characteristics of Mode I fatigue crack growth resistance of steel were determined on the basis of fatigue macrocrack growth rate diagrams da/dN–ΔKI, obtained by the standard method on compact specimens with the thickness of 10 mm at a frequency of 10-15 Hz and the stress ratio R = 0.1 and R = 0.5 of the loading cycle. The characteristics of Mode II fatigue crack growth resistance were determined on the basis of da/dN–ΔKII diagrams, obtained earlier method on edge notched specimens with the thickness 3.2 mm at a frequency of 10-15 Hz and R = -1 taking account of the crack face friction. Rolling contact fatigue testing was carried out on the model specimens. Findings: The regularities of the change of mechanical characteristics of the high-strength wheel steel with simultaneous solid solution and precipitation hardening at lowered carbon content under static, impact and cyclic loading are studied. Research limitations/implications: The results obtained using laboratory samples should be checked during a real railway wheels investigation. Practical implications: The investigated steel with simultaneous solid solution and precipitation hardening provides high wear resistance of the tread surface and damage resistance determined on the model wheels. Originality/value: A steel with solid solution hardening due to increased content of silicon (up to 0.7%) and manganese (up to 0.8%) and also with precipitation hardening (at optimal content of vanadium and nitrogen [V‧N]‧104 = 28.9%) at lowered carbon content (0.52) possesses high strength and fatigue fracture toughness in cases of Mode I and Mode II loading, causing better combination of wear and damage resistances of the tread surface of the model wheels, as compared to corresponding parameters for grade T steel.
EN
Purpose: The aim of the proposed research is to investigate the regularities of the microstructure change, fracture micromechanism and mechanical service characteristics of the high-strength wheel steel with a lowered carbon content under static, impact and cyclic loading depending on the total content of vanadium and nitrogen and also the steel heat treatment modes. Design/methodology/approach: Alloying with vanadium was carried out in the range of 0.09-0.23% and nitrogen in the range of 0.006-0.018%. All steels were heat treated by normalizing and subsequent tempering at different temperatures in the range of 450-650°C. Steels microstructure was investigated by the optical metallography methods on the microscope EPITIP-2 (Carl Zeiss Jena). Scanning electron microscope Zeiss-EVO40XVP was also used for microstructural and microfractography investigations. Static strength (UTS), relative elongation (TEL), impact toughness tests (KCV) and fatigue crack growth resistance characteristics (fatigue threshold ΔKth, cyclic fatigue fracture toughness ΔKfc) were determined on standard specimens. Rolling contact fatigue testing was carried out on the model specimens. Findings: The regularities of the change of microstructure, fracture micromechanism and mechanical characteristics of the high-strength wheel steel with a lowered carbon content under static, impact and cyclic loading depending on the total content of vanadium and nitrogen and also the steel heat treatment modes are studied. Research limitations/implications: The results obtained on laboratory samples should be tested during a real railway wheels investigation. Practical implications: The steel with the optimal parameter [V∙N]∙104 = 22.1% provides high tread surface damaging resistance established on the model wheels. Originality/value: It was established that after normalization at 950°C and tempering at 550°C the increase of ultimate strength UTS and cyclic fracture toughness ΔKfc by 4% and 19%, respectively; impact toughness at room (KCV+20) and low temperature (KCV-40) in 1.5 and 3.3 times, respectively, when parameter [V∙N]∙104 changes from 7.8 to 22.1% and carbon content from 0.63 to 0.57%.
EN
Purpose: The aim of the proposed research is to establish experimentally the relation between damaging of the tread surface of model wheels and the characteristics of fatigue crack growth resistance of wheel steels AKh th AKh th AKh fc AKh fc), depending on its microstructure. Design/methodology/approach: Characteristics of the fatigue crack growth resistance have been determined on the specimens cut out from the hot rolled plate of thickness 10 mm of the steel which is an analogue of railway wheel steels. To obtain different steel microstructures and its strength level, test specimens were quenched (820°C, in oil) and then tempered at 400°C, 500°C, and 600°C for 2 h. The characteristics of Mode I fatigue crack growth resistance of steel were determined on the basis of fatigue macrocrack growth rate diagrams da/dN-AK, obtained by the standard method on compact specimens with the thickness of 10 mm at a frequency of 10-15 Hz and the stress ratio R = 0.1 of the loading cycle. The characteristics of Mode II fatigue crack growth resistance were determined on the basis of da/dN-AKH diagrams, obtained by authors method on edge notched specimens with the thickness 3.2 mm at a frequency of 10-15 Hz and R = –1 taking account of the crack face friction. The hardness was measured with a TK-2 hardness meter. Zeiss-EVO40XVP scanning electron microscope was used for microstructural investigations. Rolling contact fatigue testing was carried out on the model specimens of a wheel of thickness 8 mm and diameter 40 mm in contact with a rail of length 220 mm, width 8 mm and height 16 mm. Wheels were manufactured form the above-described steel after different treatment modes. Rails were cut out from a head the full-scale rail of hardness 46 HRC. The damaging was assessed by a ratio of the area with gaps formed by pitting and spalling to the general area of the wheel tread surface using a special stand. Findings: The growth of the damage of the tread surface of the model wheels correlates uniquely with the decrease of the cyclic fracture toughness of the wheel steel AKh fc and AKh fc, determined at Mode I and Mode II fracture mechanisms. These characteristics of the wheel steel can be considered as the determining parameter of this process, in contrast to the fatigue thresholds AKh th and AKh th. Research limitations/implications: Investigations were conducted on model wheels that simulate the damage of real railway wheels tread surface. Practical implications: A relationship between the damage of tread surface of railway wheels and the strength level of wheel steels is determined. Originality/value: The damage of the tread surface of the model wheels during the rolling contact fatigue of the pair wheel-rail increases with the growth of the strength (hardness) of the wheel steel, which corresponds to the statistical data of the operation of the real railway wheels. Research limitations/implications: Investigations were; conducted on model wheels that simulate the damage of real railway wheels tread surface. Practical implications: A relationship between the damage of tread surface of railway wheels and the strength level of wheel steels is determined. Originality/value: The damage of the tread surface of the model wheels during the rolling) contact fatigue; of the pair wheel-rail increases with the growth of the strength (hardness) of the wheel steel, which corresponds to the statistical data of the operation of the real railway wheels.
EN
Purpose: The aim of the paper is to study the structure and fatigue crack growth resistance characteristics of weld metal (WM), and heat affected zone (HAZ) under cyclic loadings for the development of railway wheels weld-repairing technology. Design/methodology/approach: WM and HAZ of the welded joint were investigated. The welded joint of 65G steel (0.65 mass.% C; 0.19 Si; 0,91 Mn), which is a model material for high-strength railway wheels, was received by welding Sv-08HM wire per linear welding energy of 10 kJ/cm. Regimes of welding were selected so that the cooling rate of the metal in the temperature range 500-600°C was 5°C/s. As a result, the bainite structure in WM and bainite-martensite one in HAZ are formed. To eliminate the residual stresses generated after the weld cooling, heat treatment was proposed: holding at 100°C for 2 hour after cooling under temperature below then that at the beginning of martensite transformation. Fracture resistance under cyclic loading was estimated by fatigue crack growth rates diagrams (da/dN vs. ΔK) according to standard method for compact tension samples testing. The microstructure and fracture surface were investigated using an optical, and electronic scanning and transmission microscope. Findings: Microstructure parameters and fatigue crack growth resistance characteristics of WM and HAZ after the proposed heat treatment, and also residual stresses of the second kind and local strains in the bulk of bainite and martensite are obtained. Research limitations/implications: Investigations were conducted on samples that simulate the structure and properties of real renovated railway wheels made of steel with high content (0.65%) of carbon. Practical implications: Service durability and safety of weld-repaired railway wheels under high service loadings is increased. Originality/value: HAZ is the most dangerous zone in terms of fatigue cracks initiation and propagation in elements repaired by surfacing method. The positive result on the proposed heat treatment influence is received since the fatigue crack growth resistance characteristics of HAZ metal with bainite-martensite structure raise to the level of weld metal.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.